數(shù)字電源技術(shù)助力實(shí)現(xiàn)高效率電源
跳周期控制技術(shù)
一般來說,開關(guān)電源在重載時,其損耗主要是功率開關(guān)管的導(dǎo)通損耗。而在輕載時,開關(guān)管的開關(guān)損耗和磁損占主導(dǎo)地位。因此,降低開關(guān)管在輕載時的開關(guān)頻率就能明顯降低損耗,提高電源輕載時的效率。跳周期控制技術(shù)就是一種有效的方法。
通常當(dāng)電源從滿載一直減小時,其工作模式會從連續(xù)電流模式(CCM)進(jìn)入到非連續(xù)電流模式(DCM),這時為了維持輸出電壓的調(diào)節(jié),開關(guān)管的導(dǎo)通時間將會減小。如果一直繼續(xù)減小負(fù)載,開關(guān)管的導(dǎo)通時間就會到達(dá)最小導(dǎo)通時間。在達(dá)到最小導(dǎo)通時間后,如果仍繼續(xù)減小負(fù)載,調(diào)節(jié)器必須屏蔽掉一些開關(guān)脈沖,以維持輸出電壓的調(diào)節(jié)。這時一個脈沖將對輸出電容充電維持足夠的輸出能量,而在接下來的幾個脈沖被調(diào)節(jié)器屏蔽,不驅(qū)動開關(guān)管,當(dāng)輸出電壓降到調(diào)節(jié)器的閾值電壓以下時,一個新的脈沖開始。這樣,在維持輸出穩(wěn)定的前提下減少了開關(guān)次數(shù),降低了開關(guān)損耗,從而極大的提高輕載的效率。
通過ADP1043的GUI可以設(shè)置開關(guān)管的最大和最小的導(dǎo)通時間和是否啟用跳周期控制技術(shù),如圖5所示。當(dāng)所需的導(dǎo)通時間小于設(shè)置的最小導(dǎo)通時間,并且啟用了跳周期控制技術(shù)時,電源進(jìn)入跳周期的工作模式。
圖5 跳周期控制GUI設(shè)置界面
關(guān)閉同步整流
當(dāng)電源采用同步整流時,由于MOSFET的雙向?qū)ǖ奶匦裕沟么藭r的電感電流能夠反向,產(chǎn)生環(huán)流。環(huán)流的大小和輸出濾波電感有關(guān),輸出濾波電感越小,環(huán)流就會越大,相應(yīng)的損耗也會越大。由于同步整流管不能從連續(xù)電流模式(CCM)自動切換到非連續(xù)電流模式(DCM),因此要在電感電流反向前關(guān)閉同步整流,使電源進(jìn)入非連續(xù)電流模式(DCM),避免環(huán)流的產(chǎn)生,大大提高電源輕載時的效率。
通過ADP1043的GUI可以設(shè)置關(guān)閉同步整流時的電流閾值。當(dāng)輸出電流值低于該閾值時,關(guān)閉同步整流。如圖6所示為采用ADP1043設(shè)計的全橋拓?fù)涞哪K電源在不關(guān)閉和關(guān)閉同步整流在輕載條件下的損耗的情況??梢钥吹剑?dāng)關(guān)閉同步整流后,大大減少了電源的輕載損耗。
圖6 兩種模式下的輕載損耗比較
切相技術(shù)
隨著對功率要求越來越大,以及對負(fù)載瞬態(tài)響應(yīng)的要求越來越嚴(yán)格,用兩個或更多個功率單元進(jìn)行交錯處理的多相技術(shù)越來越普遍。多相電路相對于單相電路具備明顯的優(yōu)勢。這些優(yōu)勢包括輸入紋波電流很低,輸入電容數(shù)量較少;由于輸出紋波頻率的等效倍增,使輸出紋波電壓也降低了;而且由于損耗分布在更多元件中,消除了熱點(diǎn),降低了元件的溫度;在重載時,開關(guān)管的導(dǎo)通損耗占主導(dǎo),通過多相并聯(lián)可以很好的降低導(dǎo)通損耗,提高電源在重載時的效率。但是,隨著負(fù)載的減少,電路進(jìn)入輕載狀態(tài),開關(guān)管的開關(guān)損耗逐漸占主導(dǎo),此時,輸出由一相供電就已經(jīng)足夠,多相的并聯(lián)反而使開關(guān)損耗成倍增加。因而,在輕載時,僅留一相工作,關(guān)閉多相模式,可以明顯改善電路在輕載時的效率。
如圖7所示,為采用ADP1043所設(shè)計的交錯式雙管正激電路。當(dāng)輸出電流值低于通過GUI所設(shè)置的閾值時,ADP1043便會關(guān)閉QA2、QB2的驅(qū)動信號,以減少損耗。圖8所示為采用切相技術(shù)的電源的效率曲線,可以發(fā)現(xiàn)當(dāng)輸出電流低于10A時,電源工作在單相模式下,效率有了明顯的提高。
圖7 交錯式雙管正激電路
圖8 采用切相技術(shù)的效率曲線
結(jié)語
ADP1043所提供的數(shù)字電源技術(shù)可以有效提高電源無論是在重載還是在輕載時的效率,實(shí)現(xiàn)了高效率電源。
評論