兩種高功率因數(shù)開關(guān)電源設(shè)計(jì)方案的比較
4 仿真分析
4.1 PWM 整流器電路仿真與分析
采用Matlab7.6對所設(shè)計(jì)的單相全橋電壓型PWM 整流器進(jìn)行建模和仿真,在Simulink中搭建仿真模型,主電路仿真參數(shù):峰值電壓為311V,頻率為50Hz,相位為0°,采樣時(shí)間為0s;Ls=2mH,Rs=0.5Ω,直流側(cè)濾波電容Cd=2 500μF,直流側(cè)負(fù)載電阻RL=50Ω;從Power Electronics中調(diào)用Universal Bridge 模塊,并將其設(shè)置成二橋臂IGBT/Diodes模式,仿真算法設(shè)置為可變步長類算法中的ode45算法。
交流輸入側(cè)電壓與電流的仿真波形如圖6所示,可見交流側(cè)電流、電壓能始終保持同相,且電流能實(shí)現(xiàn)正弦化。直流側(cè)輸出電壓波形如圖7所示,可見0.06s后輸出電壓穩(wěn)定在400V左右。
在Powergui模塊中對電路進(jìn)行FFT分析,在Available Signals中進(jìn)行相關(guān)設(shè)置后對輸入側(cè)電流進(jìn)行諧波分析,結(jié)果如圖8所示。由圖8可知,總諧波畸變率DTH=0.77%,實(shí)現(xiàn)了系統(tǒng)低諧波畸變率的目標(biāo),電流諧波得到了很好的抑制。
圖8 輸入側(cè)電流諧波分析結(jié)果
PWM 整流器功率因數(shù)波形如圖9所示。由圖9可知,電路功率因數(shù)始終大于0.985,且工作0.03s后功率因數(shù)能達(dá)到1.
圖9 整流器功率因數(shù)波形
評論