新聞中心

EEPW首頁 > 電源與新能源 > 設(shè)計(jì)應(yīng)用 > 提高多模式 MIMO 接收器性能,同時(shí)減小占板面積

提高多模式 MIMO 接收器性能,同時(shí)減小占板面積

作者: 時(shí)間:2012-06-04 來源:網(wǎng)絡(luò) 收藏

引言
無線基站正在經(jīng)歷著根本性的變化,以使高成本 4G (第四代) 網(wǎng)絡(luò)的部署更可接受、更有效。,隨著 4G 網(wǎng)絡(luò)的數(shù)據(jù)傳輸速率到比目前的 3G 網(wǎng)絡(luò)高很多倍,要求變得越來越苛刻了。設(shè)備設(shè)計(jì)師面臨著很多挑戰(zhàn):

本文引用地址:http://m.butianyuan.cn/article/177045.htm

-在射頻單元中塞入很多 (多輸入、多輸出) 通道
-將射頻單元塞進(jìn)占板和體積更小的外殼中
-使射頻單元易于配置,以支持任何頻帶或通信標(biāo)準(zhǔn)

因此,新一代基站的外觀與過去相比有可能不同。通常稱為 RRH (遠(yuǎn)端射頻頭) 或 RRU (遠(yuǎn)端射頻單元) 的小型、不受天氣影響的密封機(jī)箱將取代在發(fā)射塔底部的空調(diào)房中放置的大型設(shè)備支架。這些機(jī)箱就像一臺(tái)臺(tái)式電腦那么大,設(shè)計(jì)為安裝在發(fā)射塔的頂部,要經(jīng)受風(fēng)吹雨打。每個(gè)機(jī)箱都有大量射頻電子單元通道,但沒有基帶調(diào)制或解調(diào)處理器。而已調(diào)制信號(hào)通過多條 100Gbps 光纖電纜或通過點(diǎn)到點(diǎn)微波鏈路送進(jìn)、送出。這些信號(hào)被發(fā)送到可能相距數(shù)十公里遠(yuǎn)的一個(gè)基站單元,并一次饋送給多個(gè)蜂窩基站。這種類型的基站架構(gòu)很容易擴(kuò)展,部署時(shí)也有可能更經(jīng)濟(jì)。

新一代系統(tǒng)的另一個(gè)趨勢(shì)是能夠工作于多個(gè)頻段 (在很多情況下能夠執(zhí)行多運(yùn)作) 的無線電設(shè)備。此類系統(tǒng)可以容易地利用軟件進(jìn)行配置以適應(yīng)任何電信運(yùn)營商的服務(wù)要求,而不受工作頻段或使用標(biāo)準(zhǔn)的影響。

網(wǎng)絡(luò)容量
就任何新一代基站而言,最重要的目標(biāo)當(dāng)然都是提供更高的數(shù)據(jù)傳輸速率,以容量。由于智能電話和便攜式電腦 / 平板電腦使用量的激增,今天的網(wǎng)絡(luò)呈現(xiàn)過載狀態(tài)。通過使兩個(gè)或更多的正交接收通道并行工作, 收發(fā)器有助實(shí)現(xiàn)較高的數(shù)據(jù)速率。其數(shù)據(jù)位流被組合起來以增加有效數(shù)據(jù)速率。

另外,多個(gè)通道還有助于減輕無線所遭受的衰落和多徑干擾,這些干擾會(huì)導(dǎo)致下降及數(shù)據(jù)損失。凌力爾特公司的 LTC5569 雙通道混頻器專為提供雙通道接收而設(shè)計(jì) (通過配置而使每個(gè)混頻器的 LO 由一個(gè)公用輸入來驅(qū)動(dòng)),從而保持了兩個(gè)通道的相位相干性。雖然這同樣可以通過采用兩個(gè)分立的混頻器來實(shí)現(xiàn),但是將兩個(gè)混頻器均內(nèi)置于單顆芯片之中可在器件之間實(shí)現(xiàn)好得多和一致的匹配。這樣的一款雙通道混頻器由于允許與兩個(gè)物理上分開的天線或接插元件緊密配合,因而可提供更高的信號(hào)完整性水平。于是,可實(shí)現(xiàn)上佳的空間分集。兩個(gè)混頻器的內(nèi)部獨(dú)立 LO 緩沖器在兩個(gè)通道之間提供了超卓的隔離,以支持將兩個(gè)或更多的數(shù)據(jù)位流級(jí)聯(lián)成單個(gè)速率高得多的數(shù)據(jù)位流。

通過在與其接收相同的方向上對(duì)信號(hào)進(jìn)行波束控制,便可在 MIMO 實(shí)現(xiàn)方案中采用一個(gè)智能型天線。為此,兩個(gè)或更多的接收通道必須測(cè)量入射信號(hào)的角度。這就使得保持兩個(gè)通道之間的 LO 相位相干性成為不可或缺。

更大的帶寬使多運(yùn)行得以實(shí)現(xiàn)
預(yù)計(jì) 4G 無線網(wǎng)絡(luò)不僅數(shù)據(jù)傳輸速率比目前的 3G 高得多,帶寬也寬得多。這就使多運(yùn)行成為可能。無線行業(yè)正在將帶寬需求從 40MHz 推進(jìn)到 65MHz,而且在有些情況下,甚至高達(dá) 75MHz。這對(duì) RF 工程師而言不是一項(xiàng)簡單的任務(wù),因?yàn)樵鲆嫫教苟葪l件很苛刻。

圖 1 顯示了一個(gè)采用 LTC5569 雙通道混頻器的應(yīng)用電路,該電路作為上行鏈路,在 2496MHz 至 2690MHz 的 LTE TDD 頻帶內(nèi)工作。請(qǐng)注意,該雙通道混頻器整體上很簡單,僅用了非常少的外部組件。

圖 1:在 2496MHz 至 2690MHz 的 MIMO TDD LTE 頻帶上工作的電路實(shí)例

在這個(gè)應(yīng)用中,要求 LTC5569 的 IF 輸出涵蓋 195MHz 至 235MHz 的頻率范圍。IF 輸出為在更高的 IF 輸出頻率時(shí)實(shí)現(xiàn)最佳回程損耗而優(yōu)化,以改善 IF 輸出頻率響應(yīng)平坦度。所測(cè)得的 IF 輸出回程損耗在 235MHz 時(shí)為 20dB,195MHz 時(shí)為 14dB。在 40MHz IF 輸出帶寬內(nèi),這實(shí)際上實(shí)現(xiàn)了 ±0.3 dB 的 IF 輸出頻率響應(yīng)平坦度。

差分 IF 輸出采用 120nH 上拉電感器 (Coilcraft 公司的 0603HP 系列,容限為 2%),還采用了一個(gè)阻抗比為 8:1 的 IF 輸出變壓器 (Mini-Circuits 公司的 TC8-1+)。這樣的輸出匹配為下一級(jí)提供了單端、50Ω 輸出阻抗。

120nH 上拉電感器與 LTC5569 混頻器的 IF 輸出電容 (1.3pF 差分) 以及其他寄生電容并聯(lián),在 IF 輸出端形成一個(gè)帶寬很寬和單極點(diǎn)帶通濾波器。每個(gè) IF 輸出引腳從 VCC 傳導(dǎo) 28mA 的 DC 電流??偟?IF DC 電流為 56mA,在 TC8-1 IF 變壓器的次級(jí)繞組和兩個(gè) 120nH IF 輸出電感器之間分配。兩個(gè)上拉電感器和 TC8-1 變壓器的中央抽頭之間的節(jié)點(diǎn)需要良好的 AC 地。這個(gè) AC 地由 10nF 旁路電容器提供。

LO 端口的匹配為 2281MHz 至 2475MHz 的低壓側(cè) LO 注入而優(yōu)化。

在 2496MHz 至 2690MHz 時(shí),在 RF 輸入范圍內(nèi)測(cè)得的性能為:

轉(zhuǎn)換增益: 1.5dB ±0.3dB
OIP3:+26.0dBm 至 27.2dBm

在 195MHz 至 235MHz 時(shí),在 IF 輸出范圍內(nèi)測(cè)得了同樣的性能。

在 MIMO RRU 設(shè)計(jì)中,尺寸很重要
在日益縮小的機(jī)箱中塞進(jìn)很多接收器通道時(shí),空間資源會(huì)很稀少。像 LTC5569 采用的那種 4mm x 4mm QFN 封裝通常只能含有一個(gè)混頻器?,F(xiàn)在,LTC5569 卻含有兩個(gè)混頻器,因此使放置密度提高了一倍。每個(gè)混頻器的 RF 輸入和公共的 LO 輸入都有集成的、內(nèi)置到該芯片中的平衡-不平衡變壓器,以使這些端口不需要外部變壓器。值得注意的是,典型的變壓器常常占用與器件本身一樣大的 PC 板。當(dāng)采用兩個(gè)或更多通道 (例如:4 個(gè)通道或 8 個(gè)通道) 時(shí),占板的增加看似微不足道,實(shí)際上其快速增加有可能變得難以處理。

值得注意的是,內(nèi)置在芯片上的 RF 平衡-不平衡變壓器擁有獨(dú)特的優(yōu)勢(shì)。因?yàn)樽鳛榘雽?dǎo)體工藝的一部分,其金屬走線的形狀和厚度以及絕緣性都得到了很好的控制,因此這些變壓器具有一致的阻抗特性,這是分立式、機(jī)械纏繞的變壓器無法比擬的。因此,這些變壓器以最小的偏差在不同系統(tǒng)間提供了可重復(fù)的響應(yīng)特性。

LTC5569 的 RF 和 LO 輸入端的 50Ω 阻抗匹配還有助于保持外部匹配要求最低。在 1.4GHz 到 3.3GHz 時(shí),RF 和 LO 輸入回程損耗高于 12dB。在這些端口將只需要 DC 隔離電容器。因?yàn)?LTC5569 能在低至 300MHz 的寬頻率范圍內(nèi)工作,所以針對(duì) 700MHz LTE 和 800MHz GSM 頻帶,它的 RF 輸入可以非常容易地匹配。

此外,LTC5569 的 2dB 高轉(zhuǎn)換增益有助于消除對(duì)額外 IF 增益級(jí)的需要。該混頻器提供卓越的 26.8dBm 輸入 IP3 性能 (在 190MHz IF 時(shí))。此外,該混頻器具有卓越的阻塞信號(hào)處理能力。當(dāng) RF 輸入端存在 5dBm 的帶內(nèi)阻塞信號(hào)時(shí),其 NF 僅略有下降,從 11.7dB 降至 17dB (在 1.95GHz RF 時(shí))。

低功率使熱量管理可控
這么高的混頻器性能幾乎總是以犧牲功耗性能為代價(jià)實(shí)現(xiàn)的。LTC5569 的性能已經(jīng)為更低的 3.3V 電源電壓而進(jìn)行了優(yōu)化。采樣這樣的電源電壓,每個(gè)混頻器都以僅為 90mA 的 DC 電流工作,以實(shí)現(xiàn)每通道 300mW 的卓越功耗。如果考慮該器件提供的寬帶性能、線性度和信號(hào)增益,那么 LTC5569 在混頻器領(lǐng)域是非常出色的。

以這樣的功耗,一個(gè) 8 通道 MIMO 接收器可以僅消耗 2.4W 功率。而可替代的每通道 1W 的混頻器組成同樣的接收器總共消耗 8W 功率,可見 LTC5569 的總功耗低得多。

當(dāng)在印刷電路板上焊接該雙通道混頻器時(shí),應(yīng)該小心,以確保底面裸露的中央焊盤得到完全充分的焊接。這不僅對(duì)提供最高效的熱量傳導(dǎo)很重要,而且對(duì)實(shí)現(xiàn)最佳的 RF 信號(hào)接地也很有必要。這樣能提高 RF 信噪比性能。

LTC5569 的封裝具有非常低的 8°C/W 結(jié)點(diǎn)至管殼熱阻 (ΘJC)。在兩個(gè)通道都工作 (總功耗為 600mW)、電路板溫度為 105°C 時(shí),該器件的節(jié)溫僅為 110°C,遠(yuǎn)低于 150°C 的絕對(duì)最大額定值。

結(jié)論
LTC5569 雙通道混頻器在非常寬的帶寬范圍內(nèi)提供卓越的性能,具有緊湊的占板面積和非常低的功耗。該器件能應(yīng)對(duì)新一代 LTE MIMO RRU 的高要求帶來的挑戰(zhàn)。



評(píng)論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉