新聞中心

EEPW首頁 > 電源與新能源 > 設(shè)計應(yīng)用 > 利用具有LDO特性的DC/DC轉(zhuǎn)換器滿足下一代移動應(yīng)用設(shè)計需求(上)

利用具有LDO特性的DC/DC轉(zhuǎn)換器滿足下一代移動應(yīng)用設(shè)計需求(上)

作者: 時間:2012-02-13 來源:網(wǎng)絡(luò) 收藏

今天的手機不斷向小型化和薄型化發(fā)展。這點毫不奇怪,技術(shù)尺寸方面的多數(shù)進展是一個關(guān)鍵問題,可以決定產(chǎn)品開發(fā)的命運。由于器件的尺寸不斷變小,元件尺寸和元件數(shù)量也必須如此。隨著每個元件周圍的空間縮小,元件的布置變得更加重要。干擾與“低噪聲安置”成為工程師工作的一部分。小于0.6mm的元件現(xiàn)已成為標(biāo)準(zhǔn)要求。但是,有一些限制因素正在制約這種尺寸縮小的趨勢。第一個因素是手機每增加一個新特點,其功耗也要相應(yīng)增加。最明顯的例子是,10年前顯示屏的功耗不到50mW,今天已上升到150mW-200mW,預(yù)計幾年后將上升到3-500mW。此外,還有多媒體處理器、相機模塊、電視調(diào)諧器等等,很容易看到為什么手機的功耗不斷增加。

本文引用地址:http://m.butianyuan.cn/article/177909.htm

  不幸的是,電池技術(shù)跟不上這種的步伐。鋰離子能量密度只增長了一倍,從100Whr/Kg左右上升到了200Whr/kg左右,而手機功耗卻增長了三倍。即使考慮到了密度方面的改善,今天普通電池的尺寸與前幾年一樣,甚至比前幾年還大,而通話時間和待機時間卻變短了。考慮到所有這些因素,容易看出電源管理在今天的產(chǎn)品中扮演著越來越重要的角色。

電源管理器件的類型

  作為一個例子,讓我們看看手機的心臟——基帶處理器。手機中的基帶處理器傳統(tǒng)上利用) target=_blank>低壓降線性穩(wěn)壓器()供電。的優(yōu)點是在各種條件下的輸出噪聲偏差都很低,尺寸很小,容易使用,而且不會在電池上產(chǎn)生可能影響其它元件的反射噪聲,外部元件較少。LDO的缺點是其效率通常低于DC/DC,而且效率隨著芯片組電壓要求的下降而下降,但電池電壓保持不變。隨著手機功能對于功率的不斷增加,許多師正在采用DC/DC來代替LDO,以提高效率和維持電池壽命。

  DC/DC師提供了一種可行的替代方案;它們在廣泛的負載范圍內(nèi)高效率,LDO在這方面無法與之相比。但是,DC/DC轉(zhuǎn)換器在其它所有方面幾乎都遜于LDO,它的尺寸較大,較難使用,需要更多的外部元件,而且產(chǎn)生更多的噪聲。最大的外部元件是電感。為了使DC/DC轉(zhuǎn)換器有效地運行,該器件必須以較高的頻率開關(guān)一個存儲元件,通常是一個電感。這個功能必然產(chǎn)生噪聲,并使穩(wěn)壓器的尺寸變大。這種“噪聲”可以轉(zhuǎn)移到它所供電的器件,也就是基帶處理器,從而引起系統(tǒng)問題。它也可能沾染電池,進而導(dǎo)致噪聲擴散到手機的每個部位。為了降低這種現(xiàn)象,手機師必須增加電容和電感等額外的過濾元件,以隔離和抑制噪聲。這將擴大產(chǎn)品尺寸和提高復(fù)雜性。同時也需要對電路板的空間進行認真規(guī)劃,以使敏感區(qū)域遠離DC/DC轉(zhuǎn)換器,并盡可能在與之隔絕。噪聲并不是總可以預(yù)測的,而在設(shè)計大批量消費產(chǎn)品時,可預(yù)測性和對風(fēng)險采取保守對策是極其重要的。

  圖1所示為用于手機的LDO及傳統(tǒng)的DC/DC轉(zhuǎn)換器之間的差異。

利用具有LDO特性的DC/DC轉(zhuǎn)換器滿足下一代移動應(yīng)用設(shè)計需求
圖1:用于手機的LDO及傳統(tǒng)的DC/DC轉(zhuǎn)換器之間的差異。

理想的電源管理元件

  從效率角度來看,顯然DC/DC轉(zhuǎn)換器是電源管理的未來方向。挑戰(zhàn)在于降低DC/DC轉(zhuǎn)換器的尺寸,使之成為象LDO那樣的小型、簡單、低噪聲和便宜器件。要求產(chǎn)品小型化的市場力量和,將迫使出現(xiàn)這種情況。

  為了搞清楚如何實現(xiàn)這個目標(biāo),讓我們先看一下構(gòu)成DC/DC轉(zhuǎn)換器的器件。最大器件是電感。電感是一個開關(guān)存儲元件,因此不僅尺寸大,而且會產(chǎn)生磁場,從而在電路板設(shè)計中引起噪聲問題。顯然,電感的面積和高度必須縮小,以接近理想的LDO類型的產(chǎn)品。我們再看看DC/DC轉(zhuǎn)換器的功能,以及為什么電感的尺寸需要做得這么大。圖2所示為一個非同步降壓DC/DC轉(zhuǎn)換器的基本運行。移動DC/DC轉(zhuǎn)換器通常是天生同步的,用MOSFET代替二極管以提高效率。為了便于理解,利用一個非同步降壓轉(zhuǎn)換器來介紹運行情況。

  開關(guān)開關(guān)兩種工作模式,每秒開關(guān)的次數(shù)就是開關(guān)頻率。當(dāng)開關(guān)關(guān)閉時,能量就被輸送到輸出負載并存儲在電感里面。當(dāng)開關(guān)打開時,存儲在電感中的能量被傳送到輸出。開關(guān)的開與關(guān)之間的比率被稱為負載循環(huán),控制該比率就能控制輸出電壓。從圖2可以看出,電感電流由兩部分組成。第一個是DC輸出電流,第二個是開關(guān)電感引起的電流德耳塔IL。德耳塔IL主要由E=Ldi/dt決定。此處的E是開關(guān)關(guān)閉時電感上的電壓(輸入電壓減輸出電壓),di是德耳塔IL,dt與開關(guān)頻率成反比。德耳塔IL實際上是個多余部分,它流過輸出電容器、二極管并產(chǎn)生噪聲,并在開關(guān)開通時為開關(guān)造成額外的損失。為一個給定的設(shè)計選擇電感,完全是在德耳塔IL、噪聲有損失之間進行平衡。但有一件事是明確的:對于給定的輸入與輸出電壓,開關(guān)頻率是決定電感值的主要因素。開關(guān)頻率越高,即dt越低,則電感越小。

  不幸的是,提高開關(guān)頻率會造成很大的負作用。主要是DC/DC轉(zhuǎn)換器的效率會下降。這個理由很簡單。開關(guān)利用一定的能量來開和關(guān)。這部分能量其實是一種損失,因此每秒開關(guān)次數(shù)越多,能量損失越大,總體效率就越低??刂七@種“損失”是提高開關(guān)頻率的關(guān)鍵。

利用具有LDO特性的DC/DC轉(zhuǎn)換器滿足下一代移動應(yīng)用設(shè)計需求
圖2:DC/DC轉(zhuǎn)換器運行情況簡圖。

  今天流行的DC/DC轉(zhuǎn)換器針對工作頻率為1-3MHz的移動產(chǎn)品。在1Mhz的開關(guān)頻率下,通常需要使用4.7uH的電感,頻率為3-4MHz時電感可以降到1-1.5uH左右。圖3所示為電感尺寸與移動產(chǎn)品開關(guān)頻率的關(guān)系??梢钥吹?,為了接近與LDO相當(dāng)?shù)某叽纾姼行枰∮?uH。這樣就可以把開關(guān)頻率設(shè)定在6MHz以上。最先進的500mA 0.47uH 電感采用0805外殼尺寸,高度為0.55mm。

利用具有LDO特性的DC/DC轉(zhuǎn)換器滿足下一代移動應(yīng)用設(shè)計需求
圖3:典型移動DC/DC轉(zhuǎn)換器中的電感尺寸與開關(guān)頻率的關(guān)系。

  從圖3可以看出,在開關(guān)頻率為8MHz時,會令人想到把電感放置在IC封裝之中。電感高度目前小于0.6mm。這方面存在一些挑戰(zhàn)。



評論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉