高頻開關變換器中EMI產(chǎn)生的機理及其抑制方法
其值與電流的變化成正比,與電感成正比。因此漏感會產(chǎn)生非常高的反電動勢疊加在關斷電壓上,形成關斷電壓尖峰,產(chǎn)生傳導性電磁干擾。漏感與開關管之間的寄生電容還會發(fā)生震蕩,影響電路中的電磁環(huán)境,產(chǎn)生噪聲。開關管開通時,寄生電容瞬間放電,產(chǎn)生尖峰電流,初級線圈也會造成浪涌電流的產(chǎn)生,影響電磁環(huán)境。
2.3 輸出整流二極管反向恢復造成的電磁噪聲
二極管承受反向電壓時,PN結(jié)內(nèi)積累的電荷將釋放并形成一個反向電流,反向恢復電流脈沖的幅度、脈沖寬度和形狀與二極管本身的特性及電路參數(shù)有關,而且恢復到零點的時間與結(jié)電容等因素有關。高頻整流二極管由于反向恢復電流脈沖的幅度和di/dt都很大,它們在引線電感和與其相連接的電路中都會產(chǎn)生很高的感應電壓,從而造成很強寬頻的瞬態(tài)電磁噪聲。二極管反向恢復過程電壓、電流波形如圖4所示。
在高頻開關電源、高頻DC/DC諧振變換器以及功率因數(shù)校正電路等重復開關頻率較高的變流器電路中,都要用到快恢復二極管。它們的反向恢復時間通常在納秒量級,因此通過引線電感造成的瞬態(tài)電磁噪聲是不可忽視的。特別是在反激式開關電源中,二極管反向恢復電流尖峰還有可能從次級傳到初級,在開關開通時,形成一個電流尖峰,不僅容易燒毀開關管,還造成電磁噪聲。
形成電磁干擾的三要素是干擾源、傳播途徑和受擾設備。因而,抑制電磁干擾也應該從這三方面著手。首先應該抑制干擾源,直接消除干擾原因;其次是消除干擾源和受擾設備之間的藕合和輻射,切斷電磁干擾的傳播途徑;第三是提高受擾設備的抗擾能力,降低其對噪聲的敏感度。目前抑制干擾的幾種措施基本上都是用切斷電磁干擾源和受擾設備之間的藕合通道,常用的方法是屏蔽、接地和濾波。在實踐中證明這些都是行之有效的方法。本文通過介紹一種可行性技術從電路上改進,直接控制干擾源。
軟開關技術的應用大大提高了電源的效率,在節(jié)能方面做出了巨大的貢獻。但在一些電路拓撲結(jié)構中,軟開關技術的應用還大大降低了電磁干擾,準諧振反激式變換器就是最好的一個實例,電路結(jié)構如圖5所示。
相對于一般的反激式變換器,準諧振只在原來電路基礎上加了一個無源器件電容器,不會在電路中產(chǎn)生多余的電磁噪聲。通過改變控制方式,利用變壓器初級電感與電容器之間發(fā)生諧振,在開關管電壓波形出現(xiàn)波谷處開通;關斷時利用電容器進行緩沖,可以大大降低開關管上的關斷電壓尖峰和開通電流尖峰,從而降低電磁干擾。利用安森美的NCP1207制作的準諧振反激式開關電源,其開關管上的電壓波形如圖6所示:
從圖中可以看出開關管在開通時,電壓非常低,有利于降低電流尖峰,關斷時,電壓尖峰小,從而電磁干擾降低。
4 結(jié)論
隨著開關電源的不斷高頻化,其電磁干擾問題越發(fā)顯得重要。在開發(fā)和設計開關電源中,如何有效抑制開關電源的電磁干擾,同時提高開關電源本身對電磁干擾的抗干擾能力(即EMC)是一個重要課題。因此,抑制開關電源電磁干擾還有大量的工作要做,需要全體工程技術人員不懈的努力。
評論