基于復合左右手傳輸線的帶通濾波器小型化設計
1968年,前蘇聯(lián)科學家VESELAGO從Maxwell方程出發(fā)分析了電磁波在介電常數(shù)ε和磁導率μ同時為負的介質(zhì)中的傳播特性[1],即電磁波在這種物質(zhì)中傳播時電場E、磁場H和波矢量k成左手關系,定義這種材料為左手材料LHMs(Left Hand Materials)。1996年和1999年,英國帝國理工大學的PENDRY教授分別提出導體桿(Wires)[2]和開口諧振環(huán)SRRs(Split Ring Resonator)[3]來分別實現(xiàn)負介電常數(shù)ε和負磁導率μ。2001年,美國加州大學的SMITH D R等人,通過組合導體桿和開口諧振環(huán)陣列[4],首次構(gòu)造出了微波頻段ε和μ同時為負的左手材料,取得了突破性進展。復合左右手傳輸線可以視為左手材料基于電路理論的實現(xiàn)形式,由CALOZ等人于2002年提出[5]。其左手傳輸線等效電路是由串聯(lián)電容與并聯(lián)電感構(gòu)成,實際電路形式為交指電容和短截線電感。由于寄生參數(shù)效應,其等效電路會出現(xiàn)串聯(lián)電感與并聯(lián)電容,而串聯(lián)電感與并聯(lián)電容構(gòu)成傳統(tǒng)的右手傳輸線。因此理想左手傳輸線并不存在,而是以復合左右手傳輸線的形式存在。
通信系統(tǒng)中經(jīng)常采用帶通濾波器來抑制寄生信號。隨著微波毫米波技術的快速發(fā)展,通信系統(tǒng)對微波濾波器提出了更高的性能要求,例如小型化、低插入損耗、高阻帶衰減。而復合左右手傳輸線,已經(jīng)被廣泛應用于濾波器領域。作為一般微波器件,基于其零階諧振特性,其尺寸可以突破二分之一工作波長的限制。近來,這種傳輸線已經(jīng)被用來實現(xiàn)超寬帶濾波器的小型化[6]。其電路形式除交指電容和短截線電感之外,還有平面蘑菇形式[7]、過孔蘑菇形式[8]以及互補諧振環(huán)與開縫微帶線組合的形式[9]等。其中大多數(shù)是以模仿左手傳輸線等效電路中的串聯(lián)電容和并聯(lián)電感的形式而實現(xiàn)的。本文基于左手傳輸線等效電路,提出了一種新型的基于復合左右手傳輸線理論的諧振器,并且利用兩個這樣的諧振單元,構(gòu)造了一種工作于9.2 GHz~9.5 GHz的帶通濾波器,可應用于搜救雷達頻段。與傳統(tǒng)的耦合微帶線形式的帶通濾波器相比,在兼顧性能的前提下,其實際占用尺寸縮小了80%。并且通過將基于有限元的HFSS全波仿真結(jié)果與基于矩量法的ADS仿真結(jié)果和實際測量結(jié)果對比,分析了該小型化濾波器的性能。
1 耦合微帶線濾波器設計
作為復合左右手傳輸線對微波濾波器的小型化對比,以用于搜救雷達的帶通濾波器為例。該帶通濾波器采用耦合微帶線形式,通帶范圍是9.2 GHz~9.5 GHz,中心頻率9.35 GHz,相對帶寬0.03,與50 Ω阻抗匹配。介質(zhì)基板為F4B,相對介電常數(shù)2.65,厚度1 mm,損耗正切0.001 9。為了獲得較陡峭的阻帶衰減,采用5級耦合微帶線結(jié)構(gòu)。通過ADS優(yōu)化仿真,將優(yōu)化結(jié)果導入到電路版圖,尺寸標注如圖1所示。圖2是電路仿真結(jié)果,對電路版圖產(chǎn)生的仿真結(jié)果沒有進一步微調(diào),目的是獲得該條件下耦合微帶線濾波器的一般尺寸即可,從而與基于復合左右手傳輸線原理構(gòu)成的小型化濾波器的尺寸對比。
圖1中,耦合微帶線中心對稱。經(jīng)過優(yōu)化仿真,尺寸優(yōu)化結(jié)果為W=2.73 mm, L=5.36 mm,W1=1.156 mm, W2=1.675 mm,W3=1.702 mm, L1=5.15mm,L2=5.08 mm, L3=5.094 5 mm,S1=0.487 mm,S2=1.9 mm,S3=2.1 mm。帶內(nèi)插損1 dB, 通帶波紋0.5 dB。最終,該濾波器整體占用尺寸約為為19 mm×36 mm。
2 基于復合左右手傳輸線理論的帶通濾波器設計
在普通微帶線中,只有正的諧振模式。在無耗情況下進行考慮,βl=mπ, (m=1,2,3…), β為傳播常數(shù)。諧振頻率決定腔的物理長度,即當諧振腔的長度為半波長的整數(shù)倍才會發(fā)生諧振,使得器件的尺寸大小受到了限制。這樣,基模(m=1)的微帶諧振腔長度至少為l=1/2·λ。
而CRLH TL的傳播常數(shù)可以為負(對應傳輸模式m=-1,-2…),可以為正(m=1,2…),也可以為零(m=0),這就使其具有了零模傳輸?shù)奶匦?,即零階諧振特性。由理論推導可以看出,此諧振模式與器件的尺寸無關。進一步運用Bloch-Floquet理論推導發(fā)現(xiàn),其中心頻率只依賴于結(jié)構(gòu)本身加載的電容與電感。因此,這個特性可以被用來研究實現(xiàn)微波器件的小型化。
理想左手傳輸線由串聯(lián)電容和并聯(lián)電感組成,因此,圖3所示的諧振單元可以來模仿這種電路的構(gòu)成形式:微帶線與該結(jié)構(gòu)單元之間的縫隙等效為串聯(lián)電容,該結(jié)構(gòu)單元的中心短截線通過過孔接地等效為并聯(lián)電感。基板參數(shù)與耦合微帶線濾波器相同。由于加工精度的限制,該單元饋線設置為近似50 Ω,寬度Ws=2.8 mm,長度Fs=5.4 mm,過孔直徑為0.3 mm,圓形覆銅焊盤直徑0.7 mm。該單元兩邊臂長C=3.2 mm,單元與饋線縫隙為0.2 mm。當B1=3.6 mm, B2=3.4 mm時,該諧振單元諧振于9 GHz,對該單元結(jié)構(gòu)進行矩量法仿真,并對端口進行去嵌套處理,取去嵌套距離為Fs,即去嵌套邊界剛好取到縫隙電容邊緣。其傳輸特性如圖4所示。通過調(diào)節(jié)中心短截線電感的長度或者饋線與單元間縫隙寬度可以大范圍調(diào)諧該結(jié)構(gòu)單元的諧振中心頻率。例如,隨著中心短截線長度的減小,該諧振單元的謝振頻率升高,如圖5所示。
評論