一種基于小波域的分形圖像編碼改進算法
小波圖像編碼和分形圖像編碼是兩種不同的圖像編碼方法,二者各有其特點,又都存在一定的局限性[1-3]。一幅圖像經(jīng)過小波變換后,其相同方向但不同分辨率的子圖像具有較強的相似性,這種相似性正好與分形編碼的特點具有互補性。自1995年以來,Rinaldo和Calvagno首次提出并實現(xiàn)了一種小波與分形圖像編碼相結(jié)合的算法[4]。此后,又出現(xiàn)多種小波變換與分形相結(jié)合的圖像編碼算法[5-8]。這些算法,有的證明了小波域的分形圖像解碼可以通過低分辨率小波系數(shù)向高分辨率系數(shù)連續(xù)外推實現(xiàn),即解碼無需循環(huán)迭代,是無條件收斂的;有的通過采用平滑小波基消除重構(gòu)圖像在高壓縮比時的方塊效應(yīng);有的推導(dǎo)出仿射變換的收縮因子取值不受限制,能保證解碼收斂;同時小波系數(shù)的樹狀結(jié)構(gòu)提供了自然高效的Domain塊分類方法等[9]。此外,還有一些研究集中在分形塊的類別劃分[10]以及基于小波零樹結(jié)構(gòu)的分形預(yù)測[11]等。
本文在此基礎(chǔ)上,通過分析基本分形圖像編碼的壓縮算法,提出一種基于小波域的分形圖像編碼改進算法。這種改進算法包括兩部分:(1)根據(jù)圖像小波分解后各子圖像包含的不同能量,考慮各子圖像所代表的方向、紋理特征等信息,對各子圖采用非均勻的分形編碼方案,即在進行小波域的分形編碼時,分形塊的選取不一定全是正方形,對于不同方向的紋理特征的小波子圖像選取不同形狀的分形塊; (2)根據(jù)圖像的小波變換系數(shù)在同一方向不同分辨率、同一分辨率不同方向之間都存在相關(guān)性,對每一圖像塊,在同一方向低一級分辨率的子帶圖像上尋找與其最佳分形匹配的相似塊,由這些相似塊形成一棵一棵預(yù)測樹,解碼端通過對預(yù)測樹的分形預(yù)測恢復(fù)出各級圖像塊。實驗證明,這種改進算法能夠大大提高分形編碼的速度,并取得較高的壓縮比。
1 基本分形編碼壓縮算法
基本分形編碼壓縮算法的主要內(nèi)容:將待編碼的圖像分割成互不重疊的子塊(Range Block),稱為圖像塊R,同時將圖像分割成可以相互重疊的大一些的塊(Domain Block),稱為相似塊D。對分割后的R塊和D塊進行分類,如:變換平緩的平滑區(qū)域、變換突然的邊緣區(qū)域和變換緩和的中間型區(qū)域等,使相匹配的塊具有相同的區(qū)域性質(zhì)。對分類后相同區(qū)域的每一個R塊Rj尋找可以匹配的D塊Dj,使得Dj通過仿射函數(shù)ψj可以近似于Rj,由此可以得到一組仿射變換組ψ1,ψ2…ψN,即分形迭代系統(tǒng)。只要該系統(tǒng)的變換是收斂的,且比原系統(tǒng)簡單,就實現(xiàn)了分形壓縮[12]?;痉中尉幋a算法主要在圖像分割后對R塊和D塊進行搜索匹配的過程,其壓縮比較高,但是壓縮時的計算量較大,編碼壓縮時間很長。
2 基于小波域的分形圖像編碼改進算法
本文的改進算法包括兩部分:小波域分形編碼過程中分形塊形狀的選取以及分形預(yù)測樹的形成。
2.1 小波域分形編碼過程中分形塊形狀的選取
在上述基本分形壓縮編碼過程中,在確定R塊和D塊的形狀時,對各小波分解子圖取的均是正方形。由于圖像小波分解后,各子圖包含的能量有所不同,其代表的方向、紋理等特征信息也不相同,因此,可以考慮在進行小波域的分形編碼時,分形塊的選取可以不選正方形,而是依據(jù)小波分解子圖的不同方向的紋理特征選取不同形狀的子塊。
以512×512的8 bit圖1為例進行實驗,計算結(jié)果表明,不同方向的子圖由于其紋理特征信息不同,在LH、HL、HH區(qū)域中,其水平和垂直方向的相關(guān)性不相同,所以在不同方向的分解子圖像中采用不同形狀的塊進行分形編碼,可使其編碼時間更短,圖像恢復(fù)效果更好。例如,在LH區(qū)域,通過計算分析,行相關(guān)長度大于列相關(guān)長度,圖像以水平紋理為主,可采用4×2的矩形進行R塊和D塊的分割;在HL區(qū)域,行相關(guān)長度小于列相關(guān)長度,圖像以豎直紋理為主,可采用2×4的矩形進行R塊和D塊的分割;而在HH區(qū)域,行相關(guān)長度與列相關(guān)長度接近,則可以采用正方形來分割。同時,由于左上角的低頻子圖包含了圖像的大部分能量,因此仍采用2×2正方形子塊的選取,不參加計算。圖像塊的分割方法如圖2所示。應(yīng)用均勻分塊和非均勻分塊的壓縮效果比較如圖3 所示。
評論