新聞中心

EEPW首頁(yè) > EDA/PCB > 設(shè)計(jì)應(yīng)用 > 基于FPGA增量式編碼器的接口設(shè)計(jì)與實(shí)現(xiàn)

基于FPGA增量式編碼器的接口設(shè)計(jì)與實(shí)現(xiàn)

作者: 時(shí)間:2011-12-08 來(lái)源:網(wǎng)絡(luò) 收藏

摘要 光電,又稱光電角位置傳感器,是電氣傳動(dòng)系統(tǒng)中用來(lái)測(cè)量電動(dòng)機(jī)轉(zhuǎn)速和轉(zhuǎn)子位置的核心部件。分析了光電編碼器4倍頻原理,提出了一種基于可縞程邏輯器件對(duì)光電輸出信號(hào)4倍頻、鑒相、計(jì)數(shù)的具體方法,它對(duì)提高編碼器分辨率與實(shí)現(xiàn)高精度、高穩(wěn)定性的信號(hào)檢測(cè)及位置伺服控制具有一定的現(xiàn)實(shí)意義。經(jīng)實(shí)際項(xiàng)目論證,該方案在保證測(cè)量精度的前提下,可以有效濾除噪聲干擾和消除抖動(dòng),增強(qiáng)了系統(tǒng)的干擾抑制和容錯(cuò)能力,可移植性強(qiáng),便于系統(tǒng)升級(jí)。
關(guān)鍵詞 ;增量式光電編碼器;4倍頻;鑒相

光電編碼器在現(xiàn)代電機(jī)控制系統(tǒng)中常用以檢測(cè)轉(zhuǎn)子的位置與速度,是通過(guò)光電轉(zhuǎn)換將輸出軸上的機(jī)械幾何位移量轉(zhuǎn)換成脈沖或數(shù)字量的高精度角位置測(cè)量傳感器。由于其具有分辨率高、響應(yīng)速度快、體積小、輸出穩(wěn)定等特點(diǎn),被廣泛應(yīng)用于電機(jī)伺服控制系統(tǒng)中。
編碼器按信號(hào)輸出形式分為絕對(duì)式編碼器和。絕對(duì)式光電編碼器具有輸出數(shù)字量可與PC機(jī)、ARM或等器件直接接口,無(wú)累積誤差等優(yōu)點(diǎn),但價(jià)格高、制造工藝復(fù)雜,不宜實(shí)現(xiàn)小型化。增量式光電編碼器不具有計(jì)數(shù)和接口電路,一般輸出A、B、Z脈沖信號(hào),價(jià)格較低,在實(shí)際工程中比較常用。
文中設(shè)計(jì)了一個(gè)基于FPGA的簡(jiǎn)單且精度高的接口電路,其結(jié)構(gòu)簡(jiǎn)單、性能可靠。具有濾波、硬件辨向、4倍頻計(jì)數(shù)和數(shù)據(jù)鎖存等功能。計(jì)數(shù)結(jié)果以并口輸出,可與PC機(jī)、ARM或FPGA等部件進(jìn)行并行通信。同時(shí)在并口之前,用鎖存電路來(lái)消除硬件電路延時(shí)所可能引起韻計(jì)數(shù)錯(cuò)誤,減輕了后續(xù)微機(jī)的負(fù)擔(dān),可提高被控對(duì)象的測(cè)量和控制精度。

1 4倍頻電路設(shè)計(jì)原理
增量式光電編碼器實(shí)際是一種旋轉(zhuǎn)式角位移檢測(cè)裝置,它根據(jù)軸所轉(zhuǎn)過(guò)的角度,輸出一系列脈沖,能將機(jī)械轉(zhuǎn)角變換成電脈沖,輸出信號(hào)如圖1所示。A、B兩相信號(hào)是相位相差90°的正交方波脈沖串,每個(gè)脈沖代表被測(cè)對(duì)象旋轉(zhuǎn)了一定的角度,A、B之間的相位關(guān)系則反映了被測(cè)對(duì)象的旋轉(zhuǎn)方向,即當(dāng)A相超前B相,轉(zhuǎn)動(dòng)方向?yàn)檎D(zhuǎn);當(dāng)B相超前A相,轉(zhuǎn)動(dòng)方向?yàn)榉崔D(zhuǎn)。Z信號(hào)是一個(gè)代表零位的脈沖信號(hào),可用于調(diào)零、對(duì)位和重置計(jì)數(shù)器。

本文引用地址:http://m.butianyuan.cn/article/190932.htm

a.JPG


對(duì)于每個(gè)確定的編碼器,每轉(zhuǎn)過(guò)固定角位移θ,就對(duì)應(yīng)一個(gè)脈沖信號(hào),故其量化誤差為θ/2。若將A或B信號(hào)4倍頻,則在此θ角位移內(nèi),就會(huì)產(chǎn)生4個(gè)脈沖信號(hào),其量化誤差下降為0/8,光電編碼器的角位移測(cè)量精度提高4倍。由于伺服系統(tǒng)中編碼器的轉(zhuǎn)速具有不可預(yù)見(jiàn)性,造成脈沖周期r具有不確定的特點(diǎn),從而無(wú)法使用鎖相環(huán)等常用倍頻方案。由圖1可知,在脈沖周期內(nèi),A、B兩相信號(hào)共產(chǎn)生4次變化,盡管T不確定,但由于A、B兩相方波信號(hào)之間相位關(guān)系確定,使這4次變化在相位上平均分布。如果利用這4次變化產(chǎn)生4倍頻信號(hào),則可以實(shí)現(xiàn)光電編碼器測(cè)量精度的提高。
分析發(fā)現(xiàn),4倍頻設(shè)計(jì)的關(guān)鍵在于鑒別出A、B信號(hào)的上升沿和下降沿。輸入信號(hào)與其延時(shí)信號(hào)異或后,就可得到倍頻信號(hào)。

2 接口電路的FPGA總體方案及設(shè)計(jì)實(shí)現(xiàn)
光電編碼器的可靠性與精度直接決定了控制系統(tǒng)的可靠性與控制精度??刂葡到y(tǒng)精度不會(huì)高于檢測(cè)元件的精度,也就是說(shuō)檢測(cè)元件的誤差是決定控制系統(tǒng)穩(wěn)態(tài)誤差的關(guān)鍵,這種誤差也是控制系統(tǒng)無(wú)法克服的。因此,選擇和設(shè)計(jì)高精度的光電編碼器固然重要,但后續(xù)電路對(duì)光電編碼器輸出脈沖的處理精度也不容忽視。因此,一方面要選擇精度高的光電編碼器;另一方面要重視對(duì)光電編碼器輸出脈沖的處理,傳統(tǒng)的處理方法有3種:(1)通過(guò)74LS193、74LS171、RC等搭建一個(gè)硬件電路實(shí)現(xiàn)脈沖的倍頻和鑒相的判斷。(2)直接將光電編碼器的A、B信號(hào)送至微處理器,進(jìn)行純軟件的倍頻和鑒相的判別。(3)通過(guò)硬件電路和軟件結(jié)合的方法進(jìn)行光電編碼器脈沖的處理,一般是指上述兩種方法的結(jié)合。

脈沖點(diǎn)火器相關(guān)文章:脈沖點(diǎn)火器原理

上一頁(yè) 1 2 下一頁(yè)

評(píng)論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉