使用基于FPGA的高速硬件在環(huán)仿真器進(jìn)行電機(jī)控制器
介紹
本文引用地址:http://m.butianyuan.cn/article/192074.htm電機(jī)在現(xiàn)代生活中扮演著重要角色。出于對(duì)安全、成本及效率的考慮,工程師――尤其是混合電動(dòng)力汽車(HEV)工程師――往往希望在特定的真實(shí)環(huán)境下通過(guò)仿真電機(jī)模型對(duì)電機(jī)控制器進(jìn)行測(cè)試。
由于在經(jīng)濟(jì)及環(huán)境等方面展現(xiàn)出的優(yōu)勢(shì),HEV受到了廣泛的關(guān)注,而電機(jī)正是HEV的核心部件。尤其是考慮到HEV的電機(jī)及電力電子器件體積大, 成本高; 在讓控制器去控制這些實(shí)際的部件前, 先用硬件在環(huán)仿真的方法來(lái)測(cè)試和驗(yàn)證控制器的性能是非常必要的.
本文討論基于FPGA而設(shè)計(jì)的高速HIL仿真器來(lái)實(shí)現(xiàn)電機(jī)控制器測(cè)試。下圖為HIL測(cè)試系統(tǒng)。
電機(jī)驅(qū)動(dòng)仿真器包括DC電壓源、逆變器橋路以及電機(jī)。我們支持永磁同步電機(jī)(PMSM)及無(wú)刷DC電機(jī)(BLDC).
現(xiàn)代電機(jī)驅(qū)動(dòng)系統(tǒng)通常由脈沖寬度調(diào)制(PWM)所驅(qū)動(dòng)。下圖描述了PWM的基本概念。
電機(jī)控制器將參考波形與三角載波相比較,從而確定門控制信號(hào)的狀態(tài)。
當(dāng)時(shí),上面一個(gè)電力電子器件的門極控制信號(hào)為高, 下面的器件的控制信號(hào)為低
當(dāng)時(shí),上面一個(gè)電力電子器件的門極控制信號(hào)為低, 下面的器件的控制信號(hào)為高
準(zhǔn)確檢測(cè)門信號(hào)的開關(guān)時(shí)刻對(duì)仿真器正確產(chǎn)生仿真信號(hào)來(lái)說(shuō)非常重要。否則仿真器可能產(chǎn)生抖動(dòng)、非特征諧波等不準(zhǔn)確結(jié)果,甚至變得不穩(wěn)定。下圖為PMSM電機(jī)驅(qū)動(dòng)的電流波形仿真結(jié)果。
PWM頻率為10 kHz??梢钥吹剑?0 kHz的仿真循環(huán)速率還不足以讓仿真器及時(shí)地檢測(cè)出開關(guān)時(shí)刻
因此不能獲得精確結(jié)果。檢測(cè)結(jié)果中包含了不想要的諧波分量,使結(jié)果與期望值偏差很大。而在200 kHz的循環(huán)速率下,檢測(cè)結(jié)果就好了很多。
為了獲得精確結(jié)果,仿真器的采樣間隔必須比控制器的PWM周期小很多。如此高循環(huán)速率的應(yīng)用使基于FPGA的方案成為理想選擇。我們的定點(diǎn)PMSM模型及定點(diǎn)BLDC模型均能在40個(gè)FPGA時(shí)鐘周期內(nèi)完成一次更新運(yùn)算。
提示:有時(shí),期望仿真循環(huán)速率可能超過(guò)模擬了I/O所能夠達(dá)到的速率。一般此時(shí)無(wú)需更新模擬I/O(扭矩輸入、電流輸出等)來(lái)匹配仿真循環(huán)率,用戶可使用多頻編程來(lái)保持?jǐn)?shù)字I/O及仿真循環(huán)處于高速率,從而用于門信號(hào)開關(guān)時(shí)刻的精確檢測(cè),而將模擬I/O設(shè)置于另一個(gè)循環(huán)狀態(tài),之后再通過(guò)FIFO在兩個(gè)不同頻率的循環(huán)間傳輸數(shù)據(jù)。
設(shè)計(jì)的前提假設(shè)
a. 電力電子器件的理想開關(guān)模型
將電力電子器件建模為理想開關(guān),當(dāng)門信號(hào)為真(高)時(shí),開關(guān)為理想的短路電路。當(dāng)門信號(hào)為假(低)時(shí),開關(guān)為理想的開路電路。理想開關(guān)模型非常適用于系統(tǒng)級(jí)仿真,此時(shí)我們不關(guān)心電力電子器件的寄生效應(yīng)。此外,理想開關(guān)模型可大幅提升仿真速度。
對(duì)于電力電子器件的熱損失,可以計(jì)算其等效電阻,并將此電阻值計(jì)入電機(jī)的總電阻。
評(píng)論