基于FPGA的快速傅立葉變換
關(guān)鍵詞:FPGA FFT
傅立葉變換是數(shù)字信號(hào)處理中的基本操作,廣泛應(yīng)用于表述及分析離散時(shí)域信號(hào)領(lǐng)域。但由于其運(yùn)算量與變換點(diǎn)數(shù)N的平方成正比關(guān)系,因此,在N較大時(shí),直接應(yīng)用DFT算法進(jìn)行譜變換是不切合實(shí)際的。然而,快速傅立葉變換技術(shù)的出現(xiàn)使情況發(fā)生了根本性的變化。本文主要描述了采用FPGA來實(shí)現(xiàn)2k/4k/8k點(diǎn)FFT的設(shè)計(jì)方法。
1 整體結(jié)構(gòu)
一般情況下,N點(diǎn)的傅立葉變換對(duì)為:
其中,WN=exp(-2 pi/N)。X(k)和x(n)都為復(fù)數(shù)。與之相對(duì)的快速傅立葉變換有很多種,如DIT(時(shí)域抽取法)、DIF(頻域抽取法)、Cooley-Tukey和Winograd等。對(duì)于2n傅立葉變換,Cooley-Tukey算法可導(dǎo)出DIT和DIF算法。本文運(yùn)用的基本思想是Cooley-Tukey算法,即將高點(diǎn)數(shù)的傅立葉變換通過多重低點(diǎn)數(shù)傅立葉變換來實(shí)現(xiàn)。雖然DIT與DIF有差別,但由于它們?cè)诒举|(zhì)上都是一種基于標(biāo)號(hào)分解的算法,故在運(yùn)算量和算法復(fù)雜性等方面完全一樣,而沒有性能上的優(yōu)劣之分,所以可以根據(jù)需要任取其中一種,本文主要以DIT方法為對(duì)象來討論。
N=8192點(diǎn)DFT的運(yùn)算表達(dá)式為:
式中,m=(4n1+n2)(2048k1+k2)(n=4n1+n2,k=2048k1+k2)其中n1和k2可取0,1,...,2047,k1和n2可?。?1,2,3。
由式(3)可知,8k傅立葉變換可由42k的傅立葉變換構(gòu)成。同理,4k傅立葉變換可由22k的傅立葉變換構(gòu)成。而2k傅立葉變換可由12816的傅立葉變換構(gòu)成。128的傅立葉變換可進(jìn)一步由168的傅立葉變換構(gòu)成,歸根結(jié)底,整個(gè)傅立葉變換可由基2、基4的傅立葉變換構(gòu)成。2k的FFT可以通過5個(gè)基4和1個(gè)基2變換來實(shí)現(xiàn);4k的FFT變換可通過6個(gè)基4變換來實(shí)現(xiàn);8k的FFT可以通過6個(gè)基4和1個(gè)基2變換來實(shí)現(xiàn)。也就是說:FFT的基本結(jié)構(gòu)可由基2/4模塊、復(fù)數(shù)乘法器、存儲(chǔ)單元和存儲(chǔ)器控制模塊構(gòu)成,其整體結(jié)構(gòu)如圖1所示。
圖1中,RAM用來存儲(chǔ)輸入數(shù)據(jù)、運(yùn)算過程中的中間結(jié)果以及運(yùn)算完成后的數(shù)據(jù),ROM用來存儲(chǔ)旋轉(zhuǎn)因子表。蝶形運(yùn)算單元即為基2/4模塊,控制模塊可用于產(chǎn)生控制時(shí)序及地址信號(hào),以控制中間運(yùn)算過程及最后輸出結(jié)果。
2 蝶形運(yùn)算器的實(shí)現(xiàn)
基4和基2的信號(hào)流如圖2所示。圖中,若A=r0+j*i0,B=r1+j*i1,C=r2+j*i2,D=r3+j*i3是要進(jìn)行變換的信號(hào),Wk0=c0+j*s0=1,Wk1=c1+j*s1,Wk2=c2+j*s2,Wk3=c3+j*s3為旋轉(zhuǎn)因子,將其分別代入圖2中的基4蝶形運(yùn)算單元,則有:
A′=[r0+(r1c1-i1s1)+(r2c2-i2s2)+(r3c3-i3s3)]+j[i0+(i1c1+r1s1)+(i2c2+r2s2)+(i3c3+r3s3)]? ?。ǎ矗?/P>
B′=[r0+(i1c1+r1s1)-(r2c2-i2s2)-(i3c3+r3s3)]+j[i0-(r1c1-i1s1)-(i2c2+r2s2)+(r3c3-i3s3)] (5)
C′=[r0-(r1c1-i1s1)+(r2c2-i2s2)-(r3c3-i3s3)]+j[i0-(i1c1+r1s1)+(i2c2+r2s2)-(i3c3+r3s3)] (6)
D′=[r0-(i1c1+r1s1)-(r2c2-i2s2)+(i3c3+r3s3)]+j[i0+(r1c1-i1s1)-(i2c2+r2s2)-(r3c3-i3s3)]? (7)
而在基2蝶形中,Wk0和Wk2的值均為1,這樣,將A,B,C和D的表達(dá)式代入圖2中的基2運(yùn)算的四個(gè)等式中,則有:
A′=r0+(r1c1-i1s1)+j[i0+(i1c1+r1s1)]? (8)
B′=r0- (r1c1-i1s1)+j[i0-(i1c1+r1s1)] ?。ǎ梗?/P>
C′=r2+(r3c3-i3s3)+j[i0+(i3c3+r3s3)]? (10)
D′=r2-(r3c3-i3s3)+j[i0-(i3c3+r3s3)]? (11)
在上述式(4)~(11)中有很多類同項(xiàng),如i1c1+r1s1和r1c1-i1s1等,它們僅僅是加減號(hào)的不同,其結(jié)構(gòu)和運(yùn)算均類似,這就為簡(jiǎn)化電路提供了可能。同時(shí),在蝶形運(yùn)算中,復(fù)數(shù)乘法可以由實(shí)數(shù)乘法以一定的格式來表示,這也為設(shè)計(jì)復(fù)數(shù)乘法器提供了一種實(shí)現(xiàn)的途徑。
以基4為例,在其運(yùn)算單元中,實(shí)際上只需做三個(gè)復(fù)數(shù)乘法運(yùn)算,即只須計(jì)算BWk1、CWk2和DWk3的值即可,這樣在一個(gè)基4蝶形單元里面,最多只需要3個(gè)復(fù)數(shù)乘法器就可以了。在實(shí)際過程中,在不提高時(shí)鐘頻率下,只要將時(shí)序控制好?便可利用流水線(Pipeline)技術(shù)并只用一個(gè)復(fù)數(shù)乘法器就可完成這三個(gè)復(fù)數(shù)乘法,大大節(jié)省了硬件資源。
圖2 基2和基4蝶形算法的信號(hào)流圖
3?。疲疲缘牡刂?/B>
FFT變換后輸出的結(jié)果通常為一特定的倒序,因此,幾級(jí)變換后對(duì)地址的控制必須準(zhǔn)確無誤。
倒序的規(guī)律是和分解的方式密切相關(guān)的,以基8為例,其基本倒序規(guī)則如下:
基8可以用222三級(jí)基2變換來表示,則其輸入順序則可用二進(jìn)制序列(n1 n2 n3)來表示,變換結(jié)束后,其順序?qū)⒆優(yōu)椋ǎ睿?n2 n1),如:X?011?→ x?110?,即輸入順序?yàn)椋?,輸出時(shí)順序變?yōu)椋丁?/P>
更進(jìn)一步,對(duì)于基16的變換,可由2222,44,422等形式來構(gòu)成,相對(duì)于不同的分解形式,往往會(huì)有不同的倒序方式。以44為例,其輸入順序可以用二進(jìn)制序列(n1 n2 n3 n4)來表示變換結(jié)束后,其順序可變?yōu)椋ǎǎ睿?n4)(n1 n2)),如: X?0111?→ x?1101?。即輸入順序?yàn)椋?,輸出時(shí)順序變?yōu)椋保场?/P>
在2k/4k/8k的傅立葉變換中,由于要經(jīng)過多次的基4和基2運(yùn)算,因此,從每次運(yùn)算完成后到進(jìn)入下一次運(yùn)算前,應(yīng)對(duì)運(yùn)算的結(jié)果進(jìn)行倒序,以保證運(yùn)算的正確性。
4 旋轉(zhuǎn)因子
N點(diǎn)傅立葉變換的旋轉(zhuǎn)因子有著明顯的周期性和對(duì)稱性。其周期性表現(xiàn)為:
FFT之所以可使運(yùn)算效率得到提高,就是利用
FFT之所以可使運(yùn)算效率得到提高,就是利用了對(duì)稱性和周期性把長(zhǎng)序列的DFT逐級(jí)分解成幾個(gè)序列的DFT,并最終以短點(diǎn)數(shù)變換來實(shí)現(xiàn)長(zhǎng)點(diǎn)數(shù)變換。
根據(jù)旋轉(zhuǎn)因子的對(duì)稱性和周期性,在利用ROM存儲(chǔ)旋轉(zhuǎn)因子時(shí),可以只存儲(chǔ)旋轉(zhuǎn)因子表的一部分,而在讀出時(shí)增加讀出地址及符號(hào)的控制,這樣可以正確實(shí)現(xiàn)FFT。因此,充分利用旋轉(zhuǎn)因子的性質(zhì),可節(jié)省70%以上存儲(chǔ)單元。
實(shí)際上,由于旋轉(zhuǎn)因子可分解為正、余弦函數(shù)的組合,故ROM中存的值為正、余弦函數(shù)值的組合。對(duì)2k/4k/8k的傅立葉變換來說,只是對(duì)一個(gè)周期進(jìn)行不同的分割。由于8k變換的旋轉(zhuǎn)因子包括了2k/4k的所有因子,因此,實(shí)現(xiàn)時(shí)只要對(duì)讀ROM的地址進(jìn)行控制,即可實(shí)現(xiàn)2k/4k/8k變換的通用。
5 存儲(chǔ)器的控制
因FFT是為時(shí)序電路而設(shè)計(jì)的,因此,控制信號(hào)要包括時(shí)序的控制信號(hào)及存儲(chǔ)器的讀寫地址,并產(chǎn)生各種輔助的指示信號(hào)。同時(shí)在計(jì)算模塊的內(nèi)部,為保證高速,所有的乘法器都須始終保持較高的利用率。這意味著在每一個(gè)時(shí)鐘來臨時(shí)都要向這些單元輸入新的操作數(shù),而這一切都需要控制信號(hào)的緊密配合。
為了實(shí)現(xiàn)FFT的流形運(yùn)算,在運(yùn)算的同時(shí),存儲(chǔ)器也要接收數(shù)據(jù)。這可以采用乒乓RAM的方法來完成。這種方式?jīng)Q定了實(shí)現(xiàn)FFT運(yùn)算的最大時(shí)間。對(duì)于4k操作,其接收時(shí)間為4096個(gè)數(shù)據(jù)周期,這樣?FFT的最大運(yùn)算時(shí)間就是4096個(gè)數(shù)據(jù)周期。另外,由于輸入數(shù)據(jù)是以一定的時(shí)鐘為周期依次輸入的,故在進(jìn)行內(nèi)部運(yùn)算時(shí),可以用較高的內(nèi)部時(shí)鐘進(jìn)行運(yùn)算,然后再存入RAM依次輸出。
為節(jié)省資源,可對(duì)存儲(chǔ)數(shù)據(jù)RAM采用原址讀出原址寫入的方法,即在進(jìn)行下一級(jí)變換的同時(shí),首先應(yīng)將結(jié)果回寫到讀出數(shù)據(jù)的RAM存貯器中;而對(duì)于ROM,則應(yīng)采用與運(yùn)算的數(shù)據(jù)相對(duì)應(yīng)的方法來讀出存儲(chǔ)器中旋轉(zhuǎn)因子的值。
在2k/4k/8k傅立葉變換中,要實(shí)現(xiàn)通用性,控制器是最主要的模塊。2k、4k、8k變換具有不同的內(nèi)部運(yùn)算時(shí)間和存儲(chǔ)器地址,在設(shè)計(jì)中,針對(duì)不同的點(diǎn)數(shù)應(yīng)設(shè)計(jì)不同的存儲(chǔ)器存取地址,同時(shí),在完成變換后,還要對(duì)開始輸出有用信號(hào)的時(shí)刻進(jìn)行指示。
6 硬件的選擇
本設(shè)計(jì)的硬件實(shí)現(xiàn)選用的是現(xiàn)場(chǎng)可編程門陣列(FPGA)來滿足較高速度的需要。本系統(tǒng)在設(shè)計(jì)時(shí)選用的是ALTERA公司的STRATIX芯片,該芯片中包含有DSP單元,可以完成較為耗費(fèi)資源的乘法器單元。同時(shí),該器件也包含有大量存儲(chǔ)單元,從而可保證旋轉(zhuǎn)因子的精度。
除了一些專用引腳外,FPGA上幾乎所有的引腳均可供用戶使用,這使得FPGA信號(hào)處理方案具有非常好的I/O帶寬。大量的I/O引腳和多塊存儲(chǔ)器可使設(shè)計(jì)獲得優(yōu)越的并行處理性能。其獨(dú)立的存儲(chǔ)塊可作為輸入/工作存儲(chǔ)區(qū)和結(jié)果的緩存區(qū),這使得I/O可與FFT計(jì)算同時(shí)進(jìn)行。在實(shí)現(xiàn)的時(shí)間方面,該設(shè)計(jì)能在4096個(gè)時(shí)鐘周期內(nèi)完成一個(gè)4096點(diǎn)的FFT。若采用10MHz的輸入時(shí)鐘,其變換時(shí)間在200μs左右。而由于最新的FPGA使用了MultiTrack互連技術(shù),故可在250MHz以下頻率穩(wěn)定地工作,同時(shí),FFT的實(shí)現(xiàn)時(shí)間也可以大大縮小。
FFT運(yùn)算結(jié)果的精度與輸入數(shù)據(jù)的位數(shù)及運(yùn)算過程中的位數(shù)有關(guān),同時(shí)和數(shù)據(jù)的表示形式也有很大關(guān)系。一般來說,浮點(diǎn)方式比定點(diǎn)方式精度高。而在定點(diǎn)計(jì)算中,存儲(chǔ)器數(shù)據(jù)的位數(shù)越大,運(yùn)算精度越高,使用的存儲(chǔ)單元和邏輯單元也越多。在實(shí)際應(yīng)用中,應(yīng)根據(jù)實(shí)際情況折衷選擇精度和資源。本設(shè)計(jì)通過MATLAB進(jìn)行仿真證明:其實(shí)現(xiàn)的變換結(jié)果與MATLAB工具箱中的FFT函數(shù)相比,信噪比可以達(dá)到65db以上,完全可以滿足一般工程的實(shí)際應(yīng)用要求。
評(píng)論