基于膚色模型的人臉檢測(cè)研究
2.3 閾值分割
由于人體皮膚區(qū)域的像素與膚色模型的相似程度較高,計(jì)算得到的相似度值就比較大,因此在類膚色灰度圖中,皮膚區(qū)域顯得比其他部分更亮。這樣一來(lái),通過(guò)選取合適的閾值即可分割出膚色區(qū)域。
本文實(shí)驗(yàn)選擇的閾值以0.1為間隔從0.65逐漸減小到0.05。通過(guò)對(duì)選擇的相鄰兩個(gè)閾值的圖像相減,可以找到分割區(qū)域數(shù)量變化最小的閾值取值點(diǎn),這個(gè)閾值就是最佳闞值。根據(jù)這個(gè)閾值,就可以將類膚色灰度圖轉(zhuǎn)換為二值圖。
圖2為轉(zhuǎn)換后的二值圖。本文引用地址:http://m.butianyuan.cn/article/195034.htm
2.4 區(qū)域特征分析
由于閾值分割得到的二值圖中包含多個(gè)類膚色區(qū)域,這就需要先對(duì)這些區(qū)域進(jìn)行標(biāo)記,以便逐個(gè)處理。為了不影響對(duì)人臉整體形狀的檢測(cè),采用形態(tài)學(xué)操作對(duì)標(biāo)記后的膚色區(qū)域進(jìn)行特征分析,以決定該區(qū)域是否包含一個(gè)人臉。這些特征主要包括孔洞、質(zhì)心坐標(biāo)、方向角、面積和高寬比。
由于人臉上包含有眼睛、眉毛、鼻子和一張嘴,因此在分割出來(lái)的人臉區(qū)域中至少包含一個(gè)孔洞,而且人臉的高寬比值通常接近1,這個(gè)特征參數(shù)就可以排除掉大部分的非人臉區(qū)域。實(shí)驗(yàn)中的高寬比值限定在0.6~1.2之間,當(dāng)檢測(cè)區(qū)域的高寬比值落在該區(qū)間時(shí),則認(rèn)為該區(qū)域是一個(gè)人臉候選區(qū)域。
3 模板匹配
模板匹配就是將預(yù)先建立的人臉模板與篩選出來(lái)的人臉候選區(qū)域進(jìn)行相關(guān)性匹配。匹配時(shí),首先根據(jù)候選區(qū)域的大小、質(zhì)心坐標(biāo)和方向角度調(diào)整人臉模板的尺寸、方向和位置,然后才進(jìn)行匹配。預(yù)先建立的人臉模板如圖3所示。首先用16個(gè)不同的人臉灰度圖像計(jì)算得到一張平均臉,然后從中分割出人臉的主要部分,作為實(shí)驗(yàn)中使用的人臉模板。
模板匹配常用的一種測(cè)度為模板與原圖像對(duì)應(yīng)區(qū)域的誤差平方和。確定這個(gè)值的一種方法便是使用歸一化互相關(guān)系數(shù)(以下簡(jiǎn)稱相關(guān)系數(shù))。
兩個(gè)圖像矩陣的相關(guān)性匹配通過(guò)計(jì)算式(3)得到:
經(jīng)過(guò)多次測(cè)試發(fā)現(xiàn),當(dāng)相關(guān)系數(shù)取值大約為0.6時(shí),兩個(gè)矩陣匹配較好。如果人臉模板矩陣和人臉候選區(qū)域矩陣的相關(guān)系數(shù)是0.6或者更高,則認(rèn)為該區(qū)域包含一個(gè)人臉。測(cè)試完所有的膚色區(qū)域后,在原圖中用矩形框標(biāo)示檢測(cè)到的每個(gè)人臉。檢測(cè)結(jié)果如圖4所示。
4 結(jié)語(yǔ)
實(shí)驗(yàn)中用包含有60個(gè)不同人臉(包括黑人、白人和黃色人種)的20幅圖像對(duì)算法進(jìn)行測(cè)試,其中相關(guān)系數(shù)和高寬比值都選擇最佳值。測(cè)試結(jié)果表明,本文算法對(duì)實(shí)際生活中人臉圖像的正確檢測(cè)率達(dá)到了84%,對(duì)姿態(tài)和表情同樣具有較高的魯棒性,基本上達(dá)到了預(yù)期的目標(biāo)。
評(píng)論