硅擴(kuò)頻振蕩器在汽車電子產(chǎn)品中的應(yīng)用
引言
本文引用地址:http://m.butianyuan.cn/article/196638.htm數(shù)字電子系統(tǒng)使我們的生活豐富多彩,但數(shù)字時(shí)鐘信號(hào)也扮演著“反面角色”,即傳導(dǎo)噪聲源(通過(guò)電纜)或電磁輻射干擾(EMI)。由于潛在的噪聲問(wèn)題,電子產(chǎn)品需要經(jīng)過(guò)相關(guān)標(biāo)準(zhǔn)的測(cè)試,以確保符合EMI標(biāo)準(zhǔn)。汽車電子產(chǎn)品除了存在EMI兼容性外,還要考慮其它諸多問(wèn)題,為了簡(jiǎn)化設(shè)計(jì),擴(kuò)頻(SS)振蕩器逐漸成為汽車電子儀表、駕駛員與乘客輔助電子產(chǎn)品開(kāi)發(fā)的關(guān)注焦點(diǎn)。
擴(kuò)頻振蕩器在汽車電子設(shè)計(jì)中的優(yōu)勢(shì)擴(kuò)頻技術(shù)能夠很好地滿足FCC規(guī)范和EMI兼容性的要求,EMI兼容性的好壞在很大程度上依賴于測(cè)量技術(shù)的通帶指標(biāo)。擴(kuò)頻振蕩器從根本上解決了峰值能量高度集中的問(wèn)題,這些能量被分布在噪聲基底內(nèi),降低了系統(tǒng)對(duì)濾波和屏蔽的需求,同時(shí)也帶來(lái)了其它一些好處。高品質(zhì)的多媒體、音頻、視頻及無(wú)線系統(tǒng)在當(dāng)今的汽車電子產(chǎn)品中所占的份額越來(lái)越大,設(shè)計(jì)人員不得不考慮分布在這些子系統(tǒng)敏感頻段的射頻(RF)能量。對(duì)于高品質(zhì)的無(wú)線裝置,是否能夠消除RF峰值能量直接決定了方案的有效性。
多年以來(lái),無(wú)線通信產(chǎn)品利用“頻率調(diào)節(jié)”技術(shù)避免電源開(kāi)關(guān)噪聲的影響,這種無(wú)線裝置能夠與供電電源進(jìn)行通信,使電源按照指令改變其開(kāi)關(guān)頻率,將能量峰值搬移到調(diào)諧器輸入頻段以外。在現(xiàn)代汽車電子產(chǎn)品中,隨著干擾源數(shù)量的增多,很難保證系統(tǒng)之間的協(xié)同工作,這種情況由于設(shè)備天線的多樣化以及對(duì)新添子系統(tǒng)放置位置的限制變得更為復(fù)雜。
擴(kuò)頻振蕩器在數(shù)字音頻、工廠裝配、免提裝置等系統(tǒng)中具有獨(dú)特的優(yōu)勢(shì),這些系統(tǒng)一般采用編解碼器改善音頻質(zhì)量,編解碼器與蜂窩電話或其它信息處理終端之間通過(guò)數(shù)字接口連接,如果利用“抖動(dòng)”(擴(kuò)頻)振蕩器作為編解碼器的時(shí)鐘源,能夠在非靜音情況下消除諧波噪聲。這種技術(shù)在采用了開(kāi)關(guān)電容編解碼器的多媒體系統(tǒng)中很常見(jiàn)。除了抑制諧波噪聲外,SS振蕩器能夠?qū)⒛芰糠逯到抵猎肼暬滓詢?nèi),在無(wú)線跳頻網(wǎng)絡(luò)中可減小落入信道內(nèi)的干擾。
下一代汽車電子產(chǎn)品中,幾乎所有的子系統(tǒng)都傾向于利用SS時(shí)鐘技術(shù)改善系統(tǒng)性能,降低EMI。針對(duì)這種應(yīng)用,Maxim/Dallas推出了全硅振蕩器,這種振蕩器能夠可靠啟振,而且具有抗震性。其成本與陶瓷諧振器相比極具競(jìng)爭(zhēng)力,振蕩頻率從幾千赫茲到幾十兆赫茲。
汽車電子產(chǎn)品的設(shè)計(jì)考慮有效控制EMI是電子工程師在產(chǎn)品設(shè)計(jì)中所面臨的關(guān)鍵問(wèn)題,數(shù)字系統(tǒng)時(shí)鐘是產(chǎn)生EMI的重要“源泉”[1],主要原因是:時(shí)鐘一般在系統(tǒng)中具有最高頻率,而且常常是周期性方波,時(shí)鐘引線長(zhǎng)度通常也是系統(tǒng)布線中最長(zhǎng)的。時(shí)鐘信號(hào)的頻譜包括基波和諧波,諧波成份的幅度隨著頻率的升高而降低。
系統(tǒng)中的其它信號(hào)(位于數(shù)據(jù)或地址總線上的信號(hào))按照與時(shí)鐘同步的頻率刷新,但數(shù)據(jù)刷新動(dòng)作發(fā)生在不確定的時(shí)間間隔,彼此之間不相關(guān)。由此產(chǎn)生的噪聲頻譜占有較寬的頻帶,噪聲幅度也遠(yuǎn)遠(yuǎn)低于時(shí)鐘產(chǎn)生的噪聲幅度。雖然這些信號(hào)產(chǎn)生的總噪聲能量遠(yuǎn)遠(yuǎn)高于時(shí)鐘噪聲能量,但它對(duì)EMI測(cè)試的影響非常小。EMI測(cè)試關(guān)注的是最高頻譜功率密度的幅度,而不是總輻射能量。
實(shí)際應(yīng)用中可以通過(guò)濾波、屏蔽以及良好的PC板布局改善EMI指標(biāo)。但是,增加濾波器和屏蔽會(huì)提高系統(tǒng)的成本,精確的線路板布局需要花費(fèi)很長(zhǎng)時(shí)間。解決EMI問(wèn)題的另一途徑是直接從噪聲源(通常是時(shí)鐘振蕩器)入手,產(chǎn)生隨時(shí)間改變的時(shí)鐘頻率可以很容易地降低基波和諧波幅度。
時(shí)鐘信號(hào)的能量是一定的,頻率變化的時(shí)鐘展寬了頻譜,因而也降低了各諧波分量的能量。產(chǎn)生這種時(shí)鐘的簡(jiǎn)單方法是用三角波調(diào)制一個(gè)壓控振蕩器(VCO),所得到的時(shí)鐘頻譜范圍隨著三角波幅度的增大而增大。實(shí)際應(yīng)用中需合理選擇三角波的重復(fù)周期,三角波頻率較低時(shí)會(huì)通過(guò)電源向模擬子系統(tǒng)產(chǎn)生耦合噪聲;如果選擇頻率過(guò)高三角波,則會(huì)干擾數(shù)字電路。
圖1是基于上述考慮的時(shí)鐘振蕩器原理圖,它用一個(gè)三角波控制VCO輸出頻譜的帶寬,VCO的中心頻率由DAC和可編程8位分頻器控制,可以在260kHz至133MHz范圍內(nèi)設(shè)置頻率。圖1所示IC通過(guò)2線接口控制,控制字存儲(chǔ)在芯片內(nèi)部的EEPROM內(nèi),如果預(yù)先將頻率設(shè)置在所希望的頻點(diǎn),該器件可以工作在單機(jī)模式,也可以在其空閑周期內(nèi)更新頻率,這也是它在低功耗應(yīng)用中的一個(gè)優(yōu)勢(shì)。
圖2給出了普通晶振與擴(kuò)頻時(shí)鐘振蕩器的頻譜對(duì)照?qǐng)D,通過(guò)設(shè)置三角波的幅度可以將頻譜擴(kuò)展4%,與晶體時(shí)鐘振蕩器相比峰值幅度降低近25dB。
利用擴(kuò)頻振蕩器作為微處理器的時(shí)鐘源時(shí),須確認(rèn)微處理器能夠接受時(shí)鐘占控比、上升/下降時(shí)間以及其它由于時(shí)鐘源頻率變化所造成的參數(shù)容差。當(dāng)振蕩器作為系統(tǒng)的參考時(shí)鐘使用時(shí)(實(shí)時(shí)時(shí)鐘或?qū)崟r(shí)監(jiān)測(cè)等),頻率變化可能導(dǎo)致較大誤差[2]。
許多便攜式消費(fèi)類產(chǎn)品帶有射頻功能,如蜂窩電話,擴(kuò)頻技術(shù)對(duì)于這類產(chǎn)品中的開(kāi)關(guān)電源非常有利。射頻電路(特別是VCO)對(duì)于電源噪聲非常敏感,但便攜式產(chǎn)品為了延長(zhǎng)電池的使用壽命必須使用開(kāi)關(guān)電源,以提供高效的電壓轉(zhuǎn)換。開(kāi)關(guān)電源具有與時(shí)鐘振蕩器相同的噪聲頻譜,而且,噪聲可以直接耦合到射頻電路,影響系統(tǒng)的性能指標(biāo)。
帶有外同步功能的升壓轉(zhuǎn)換器(如MAX1703)可以用一個(gè)擴(kuò)頻時(shí)鐘控制它的振蕩頻率,該方案與自激振蕩升壓轉(zhuǎn)換器的噪聲頻譜(圖3)相比能夠改善系統(tǒng)性能(圖4)。自激振蕩升壓轉(zhuǎn)換器諧波在整個(gè)10MHz范圍內(nèi)都具有較大的能量,而擴(kuò)頻方案則將諧波分量的幅度降低到噪聲基底以內(nèi)(圖4)。值得注意的是,由于總噪聲能量是固定的,擴(kuò)頻后使噪聲基底有所上升。
為時(shí)鐘源加入抖動(dòng)之前,需要考慮以下幾個(gè)問(wèn)題:需要采用何種“加抖”波形?所允許的最大時(shí)鐘偏移是多少?需要多大的抖動(dòng)速率?限制抖動(dòng)速率的因素是什么?以下就這些問(wèn)題展開(kāi)討論。
分頻器相關(guān)文章:分頻器原理
評(píng)論