新聞中心

EEPW首頁(yè) > 模擬技術(shù) > 設(shè)計(jì)應(yīng)用 > 數(shù)字電路PCB設(shè)計(jì)中的EMI控制技術(shù)

數(shù)字電路PCB設(shè)計(jì)中的EMI控制技術(shù)

作者: 時(shí)間:2016-08-23 來源:網(wǎng)絡(luò) 收藏

  1 的產(chǎn)生及抑制原理

本文引用地址:http://m.butianyuan.cn/article/201608/295910.htm

   的產(chǎn)生是由于電磁干擾源通過耦合路徑將能量傳遞給敏感系統(tǒng)造成的。它包括經(jīng)由導(dǎo)線或公共地線的傳導(dǎo)、通過空間輻射或通過近場(chǎng)耦合三種基本形式。 的危害表現(xiàn)為降低傳輸信號(hào)質(zhì)量,對(duì)電路或設(shè)備造成干擾甚至破壞,使設(shè)備不能滿足電磁兼容標(biāo)準(zhǔn)所規(guī)定的技術(shù)指標(biāo)要求。

  為抑制EMI,數(shù)字電路的EMI 設(shè)計(jì)應(yīng)按下列原則進(jìn)行:

  * 根據(jù)相關(guān)EMC/EMI 技術(shù)規(guī)范,將指標(biāo)分解到單板電路,分級(jí)控制。

  * 從EMI 的三要素即干擾源、能量耦合途徑和敏感系統(tǒng)這三個(gè)方面來控制,使電路有平坦的頻響,保證電路正常、穩(wěn)定工作。

  * 從設(shè)備前端設(shè)計(jì)入手,關(guān)注EMC/EMI 設(shè)計(jì),降低設(shè)計(jì)成本。

  2 數(shù)字電路 的EMI 控制技術(shù)

  在處理各種形式的EMI 時(shí),必須具體問題具體分析。在數(shù)字電路的 設(shè)計(jì)中,可以從下列幾個(gè)方面進(jìn)行EMI 控制。

  2.1 器件選型

  在進(jìn)行EMI 設(shè)計(jì)時(shí),首先要考慮選用器件的速率。任何電路,如果把上升時(shí)間為5ns 的器件換成上升時(shí)間為2.5ns 的器件,EMI 會(huì)提高約4倍。EMI 的輻射強(qiáng)度與頻率的平方成正比,最高EMI 頻率(fknee)也稱為EMI 發(fā)射帶寬,它是信號(hào)上升時(shí)間而不是信號(hào)頻率的函數(shù):

  fknee =0.35/Tr (其中Tr 為器件的信號(hào)上升時(shí)間)

  這種輻射型EMI 的頻率范圍為30MHz 到幾個(gè)GHz,在這個(gè)頻段上,波長(zhǎng)很短,電路板上即使非常短的布線也可能成為發(fā)射天線。當(dāng)EMI 較高時(shí),電路容易喪失正常的功能。因此,在器件選型上,在保證電路性能要求的前提下,應(yīng)盡量使用低速芯片,采用合適的驅(qū)動(dòng)/接收電路。另外,由于器件的引線管腳都具有寄生電感和寄生電容,因此在高速設(shè)計(jì)中,器件封裝形式對(duì)信號(hào)的影響也是不可忽視的,因?yàn)樗彩钱a(chǎn)生EMI 輻射的重要因素。一般地,貼片器件的寄生參數(shù)小于插裝器件,BGA 封裝的寄生參數(shù)小于QFP 封裝。

  2.2 連接器的選擇與信號(hào)端子定義

  連接器是高速信號(hào)傳輸?shù)年P(guān)鍵環(huán)節(jié),也是易產(chǎn)生EMI 的薄弱環(huán)節(jié)。在連接器的端子設(shè)計(jì)上可多安排地針,減小信號(hào)與地的間距,減小連接器中產(chǎn)生輻射的有效信號(hào)環(huán)路面積,提供低阻抗回流通路。必要時(shí),要考慮將一些關(guān)鍵信號(hào)用地針隔離。

  2.3 疊層設(shè)計(jì)

  在成本許可的前提下,增加地線層數(shù)量,將信號(hào)層緊鄰地平面層可以減少EMI 輻射。對(duì)于高速,電源層和地線層緊鄰耦合,可降低電源阻抗,從而降低EMI。

  2.4 布局

  根據(jù)信號(hào)電流流向,進(jìn)行合理的布局,可減小信號(hào)間的干擾。合理布局是控制EMI 的關(guān)鍵。布局的基本原則是:

  * 模擬信號(hào)易受數(shù)字信號(hào)的干擾,模擬電路應(yīng)與數(shù)字電路隔開;

  * 時(shí)鐘線是主要的干擾和輻射源,要遠(yuǎn)離敏感電路,并使時(shí)鐘走線最短;

  * 大電流、大功耗電路盡量避免布置在板中心區(qū)域,同時(shí)應(yīng)考慮散熱和輻射的影響;

  * 連接器盡量安排在板的一邊,并遠(yuǎn)離高頻電路;

  * 輸入/輸出電路靠近相應(yīng)連接器,去耦電容靠近相應(yīng)電源管腳;

  * 充分考慮布局對(duì)電源分割的可行性,多電源器件要跨在電源分割區(qū)域邊界布放,以有效降低平面分割對(duì)EMI 的影響;

  * 回流平面(路徑)不分割。

  2.5 布線

  * 阻抗控制:高速信號(hào)線會(huì)呈現(xiàn)傳輸線的特性,需要進(jìn)行阻抗控制,以避免信號(hào)的反射、過沖和振鈴,降低EMI 輻射。

  * 將信號(hào)進(jìn)行分類,按照不同信號(hào)(模擬信號(hào)、時(shí)鐘信號(hào)、I/O 信號(hào)、總線、電源等)的EMI 輻射強(qiáng)度及敏感程度,使干擾源與敏感系統(tǒng)盡可能分離,減小耦合。

  * 嚴(yán)格控制時(shí)鐘信號(hào)(特別是高速時(shí)鐘信號(hào))的走線長(zhǎng)度、過孔數(shù)、跨分割區(qū)、端接、布線層、回流路徑等。

  * 信號(hào)環(huán)路,即信號(hào)流出至信號(hào)流入形成的回路,是PCB 設(shè)計(jì)中EMI 控制的關(guān)鍵,在布線時(shí)必須加以控制。要了解每一關(guān)鍵信號(hào)的流向,對(duì)于關(guān)鍵信號(hào)要靠近回流路徑布線,確保其環(huán)路面積最小。

  

 

  對(duì)低頻信號(hào),要使電流流經(jīng)電阻最小的路徑;對(duì)高頻信號(hào),要使高頻電流流經(jīng)電感最小的路徑,而非電阻最小的路徑(見圖1)。對(duì)于差模輻射,EMI 輻射強(qiáng)度(E)正比于電流、電流環(huán)路的面積以及頻率的平方。(其中I 是電流、A 是環(huán)路面積、f 是頻率、r 是到環(huán)路中心的距離,k 為常數(shù)。)

  因此當(dāng)最小電感回流路徑恰好在信號(hào)導(dǎo)線下面時(shí),可以減小電流環(huán)路面積,從而減少EMI輻射能量。

  * 關(guān)鍵信號(hào)不得跨越分割區(qū)域。

  * 高速差分信號(hào)走線盡可能采用緊耦合方式。

  * 確保帶狀線、微帶線及其參考平面符合要求。

  * 去耦電容的引出線應(yīng)短而寬。

  * 所有信號(hào)走線應(yīng)盡量遠(yuǎn)離板邊緣。

  * 對(duì)于多點(diǎn)連接網(wǎng)絡(luò),選擇合適的拓?fù)浣Y(jié)構(gòu),以減小信號(hào)反射,降低EMI 輻射。

  2.6 電源平面的分割處理

  * 電源層的分割

  在一個(gè)主電源平面上有一個(gè)或多個(gè)子電源時(shí),要保證各電源區(qū)域的連貫性及足夠的銅箔寬度。分割線不必太寬,一般為20~50mil 線寬即可,以減少縫隙輻射。

  * 地線層的分割

  地平面層應(yīng)保持完整性,避免分割。若必須分割,要區(qū)分?jǐn)?shù)字地、模擬地和噪聲地,并在出口處通過一個(gè)公共接地點(diǎn)與外部地相連。

  為了減小電源的邊緣輻射,電源/地平面應(yīng)遵循20H 設(shè)計(jì)原則,即地平面尺寸比電源平面尺寸大20H(見圖2),這樣邊緣場(chǎng)輻射強(qiáng)度可下降70% 。

  

 

  3 EMI 的其它控制手段

  3.1 電源系統(tǒng)設(shè)計(jì)

  * 設(shè)計(jì)低阻抗電源系統(tǒng),確保在低于fknee 頻率范圍內(nèi)的電源分配系統(tǒng)的阻抗低于目標(biāo)阻抗。

  * 使用濾波器,控制傳導(dǎo)干擾。

  * 電源去耦。在EMI 設(shè)計(jì)中,提供合理的去耦電容,能使芯片可靠工作,并降低電源中的高頻噪聲,減少EMI。由于導(dǎo)線電感及其它寄生參數(shù)的影響,電源及其供電導(dǎo)線響應(yīng)速度慢,從而會(huì)使高速電路中驅(qū)動(dòng)器所需要的瞬時(shí)電流不足。合理地設(shè)計(jì)旁路或去耦電容以及電源層的分布電容,能在電源響應(yīng)之前,利用電容的儲(chǔ)能作用迅速為器件提供電流。正確的電容去耦可以提供一個(gè)低阻抗電源路徑,這是降低共模EMI 的關(guān)鍵。

  3.2 接地

  接地設(shè)計(jì)是減少整板EMI 的關(guān)鍵。

  * 確定采用單點(diǎn)接地、多點(diǎn)接地或者混合接地方式。

  * 數(shù)字地、模擬地、噪聲地要分開,并確定一個(gè)合適的公共接地點(diǎn)。

  * 雙面板設(shè)計(jì)若無(wú)地線層,則合理設(shè)計(jì)地線網(wǎng)格很重要,應(yīng)保證地線寬度》電源線寬度》信號(hào)線寬度。也可采用大面積鋪地的方式,但要注意在同一層上的大面積地的連貫性要好。

  * 對(duì)于多層板設(shè)計(jì),應(yīng)確保有地平面層,減小共地阻抗。

  3.3 串接阻尼電阻

  在電路時(shí)序要求允許的前提下,抑制干擾源的基本技術(shù)是在關(guān)鍵信號(hào)輸出端串入小阻值的電阻,通常采用22~33Ω的電阻。這些輸出端串聯(lián)小電阻能減慢上升/下降時(shí)間并能使過沖及下沖信號(hào)變得較平滑,從而減小輸出波形的高頻諧波幅度,達(dá)到有效地抑制EMI 的目的。

  3.4 屏蔽

  * 關(guān)鍵器件可以使用EMI 屏蔽材料或屏蔽網(wǎng)。

  * 對(duì)關(guān)鍵信號(hào)的屏蔽,可以設(shè)計(jì)成帶狀線或在關(guān)鍵信號(hào)的兩側(cè)以地線相隔離。

  3.5 擴(kuò)頻

  擴(kuò)展頻譜(擴(kuò)頻)的方法是一種新的降低EMI 的有效方法。擴(kuò)展頻譜是將信號(hào)進(jìn)行調(diào)制,把信號(hào)能量擴(kuò)展到一個(gè)比較寬的頻率范圍上。實(shí)際上,該方法是對(duì)時(shí)鐘信號(hào)的一種受控的調(diào)制,這種方法不會(huì)明顯增加時(shí)鐘信號(hào)的抖動(dòng)。實(shí)際應(yīng)用證明擴(kuò)展頻譜技術(shù)是有效的,可以將輻射降低7到20dB。

  3.6 EMI 分析與測(cè)試

  * 仿真分析

  完成PCB 布線后,可以利用EM I 仿真軟件及專家系統(tǒng)進(jìn)行仿真分析,模擬EMC/EMI 環(huán)境,以評(píng)估產(chǎn)品是否滿足相關(guān)電磁兼容標(biāo)準(zhǔn)要求。

  * 掃描測(cè)試

  利用電磁輻射掃描儀,對(duì)裝聯(lián)并上電后的機(jī)盤掃描,得到PCB 中電磁場(chǎng)分布圖(如圖3,圖中紅色、綠色、青白色區(qū)域表示電磁輻射能量由低到高),根據(jù)測(cè)試結(jié)果改進(jìn)PCB 設(shè)計(jì)。

  

 

  4 小結(jié)

  隨著新的高速芯片的不斷開發(fā)與應(yīng)用,信號(hào)頻率也越來越高,而承載它們的PCB 板可能會(huì)越來越小。PCB 設(shè)計(jì)將面臨更加嚴(yán)峻的EMI 挑戰(zhàn),唯有不斷探索、不斷創(chuàng)新,才能使PCB板的EMC /EMI 設(shè)計(jì)取得成功。



關(guān)鍵詞: PCB EMI

評(píng)論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉