新聞中心

EEPW首頁 > 嵌入式系統(tǒng) > 設計應用 > 解析 STM32 的啟動過程

解析 STM32 的啟動過程

作者: 時間:2016-11-11 來源:網絡 收藏
當前的嵌入式應用程序開發(fā)過程里,并且C語言成為了絕大部分場合的最佳選擇。如此一來main函數似乎成為了理所當然的起點——因為C程序往往從main函數開始執(zhí)行。但一個經常會被忽略的問題是:微控制器單片機)上電后,是如何尋找到并執(zhí)行main函數的呢?很顯然微控制器無法從硬件上定位main函數的入口地址,因為使用C語言作為開發(fā)語言后,變量/函數的地址便由編譯器在編譯時自行分配,這樣一來main函數的入口地址在微控制器的內部存儲空間中不再是絕對不變的。相信讀者都可以回答這個問題,答案也許大同小異,但肯定都有個關鍵詞,叫“啟動文件”,用英文單詞來描述是“Bootloader”。

無論性能高下,結構簡繁,價格貴賤,每一種微控制器(處理器)都必須有啟動文件,啟動文件的作用便是負責執(zhí)行微控制器從“復位”到“開始執(zhí)行main函數”中間這段時間(稱為啟動過程)所必須進行的工作。最為常見的51,AVR或MSP430等微控制器當然也有對應啟動文件,但開發(fā)環(huán)境往往自動完整地提供了這個啟動文件,不需要開發(fā)人員再行干預啟動過程,只需要從main函數開始進行應用程序的設計即可。

本文引用地址:http://m.butianyuan.cn/article/201611/316894.htm

話題轉到STM32微控制器,無論是keil
uvision4還是IAR EWARM開發(fā)環(huán)境,ST公司都提供了現成的直接可用的啟動文件,程序開發(fā)人員可以直接引用啟動文件后直接進行C應用程序的開發(fā)。這樣能大大減小開發(fā)人員從其它微控制器平臺跳轉至STM32平臺,也降低了適應STM32微控制器的難度(對于上一代ARM的當家花旦ARM9,啟動文件往往是第一道難啃卻又無法逾越的坎)。

相對于ARM上一代的主流ARM7/ARM9內核架構,新一代Cortex內核架構的啟動方式有了比較大的變化。ARM7/ARM9內核的控制器在復位后,CPU會從存儲空間的絕對地址0x000000取出第一條指令執(zhí)行復位中斷服務程序的方式啟動,即固定了復位后的起始地址為0x000000(PC = 0x000000)同時中斷向量表的位置并不是固定的。而Cortex-M3內核則正好相反,有3種情況:
1、通過boot引腳設置可以將中斷向量表定位于SRAM區(qū),即起始地址為0x2000000,同時復位后PC指針位于0x2000000處;
2、通過boot引腳設置可以將中斷向量表定位于FLASH區(qū),即起始地址為0x8000000,同時復位后PC指針位于0x8000000處;
3、通過boot引腳設置可以將中斷向量表定位于內置Bootloader區(qū),本文不對這種情況做論述;
而Cortex-M3內核規(guī)定,起始地址必須存放堆頂指針,而第二個地址則必須存放復位中斷入口向量地址,這樣在Cortex-M3內核復位后,會自動從起始地址的下一個32位空間取出復位中斷入口向量,跳轉執(zhí)行復位中斷服務程序。對比ARM7/ARM9內核,Cortex-M3內核則是固定了中斷向量表的位置而起始地址是可變化的。
有了上述準備只是后,下面以STM32的2.02固件庫提供的啟動文件“stm32f10x_vector.s”為模板,對STM32的啟動過程做一個簡要而全面的解析。
程序清單一:
;文件“stm32f10x_vector.s”,其中注釋為行號
DATA_IN_ExtSRAM EQU 0;1
Stack_Size EQU 0x00000400;2
AREA STACK, NOINIT, READWRITE, ALIGN = 3;3
Stack_Mem SPACE Stack_Size;4
__initial_sp;5
Heap_Size EQU 0x00000400;6
AREA HEAP, NOINIT, READWRITE, ALIGN = 3;7
__heap_base;8
Heap_Mem SPACE Heap_Size;9
__heap_limit;10
THUMB;11
PRESERVE8;12
IMPORT NMIException;13
IMPORT HardFaultException;14
IMPORT MemManageException;15
IMPORT BusFaultException;16
IMPORT UsageFaultException;17
IMPORT SVCHandler;18
IMPORT DebugMonitor;19
IMPORT PendSVC;20
IMPORT SysTickHandler;21
IMPORT WWDG_IRQHandler;22
IMPORT PVD_IRQHandler;23
IMPORT TAMPER_IRQHandler;24
IMPORT RTC_IRQHandler;25
IMPORT FLASH_IRQHandler;26
IMPORT RCC_IRQHandler;27
IMPORT EXTI0_IRQHandler;28
IMPORT EXTI1_IRQHandler;29
IMPORT EXTI2_IRQHandler;30
IMPORT EXTI3_IRQHandler;31
IMPORT EXTI4_IRQHandler;32
IMPORT DMA1_Channel1_IRQHandler;33
IMPORT DMA1_Channel2_IRQHandler;34
IMPORT DMA1_Channel3_IRQHandler;35
IMPORT DMA1_Channel4_IRQHandler;36
IMPORT DMA1_Channel5_IRQHandler;37
IMPORT DMA1_Channel6_IRQHandler;38
IMPORT DMA1_Channel7_IRQHandler;39
IMPORT ADC1_2_IRQHandler;40
IMPORT USB_HP_CAN_TX_IRQHandler;41
IMPORT USB_LP_CAN_RX0_IRQHandler;42
IMPORT CAN_RX1_IRQHandler;43
IMPORT CAN_SCE_IRQHandler;44
IMPORT EXTI9_5_IRQHandler;45
IMPORT TIM1_BRK_IRQHandler;46
IMPORT TIM1_UP_IRQHandler;47
IMPORT TIM1_TRG_COM_IRQHandler;48
IMPORT TIM1_CC_IRQHandler;49
IMPORT TIM2_IRQHandler;50
IMPORT TIM3_IRQHandler;51
IMPORT TIM4_IRQHandler;52
IMPORT I2C1_EV_IRQHandler;53
IMPORT I2C1_ER_IRQHandler;54
IMPORT I2C2_EV_IRQHandler;55
IMPORT I2C2_ER_IRQHandler;56
IMPORT SPI1_IRQHandler;57
IMPORT SPI2_IRQHandler;58
IMPORT USART1_IRQHandler;59
IMPORT USART2_IRQHandler;60
IMPORT USART3_IRQHandler;61
IMPORT EXTI15_10_IRQHandler;62
IMPORT RTCAlarm_IRQHandler;63
IMPORT USBWakeUp_IRQHandler;64
IMPORT TIM8_BRK_IRQHandler;65
IMPORT TIM8_UP_IRQHandler;66
IMPORT TIM8_TRG_COM_IRQHandler;67
IMPORT TIM8_CC_IRQHandler;68
IMPORT ADC3_IRQHandler;69
IMPORT FSMC_IRQHandler;70
IMPORT SDIO_IRQHandler;71
IMPORT TIM5_IRQHandler;72
IMPORT SPI3_IRQHandler;73
IMPORT UART4_IRQHandler;74
IMPORT UART5_IRQHandler;75
IMPORT TIM6_IRQHandler;76
IMPORT TIM7_IRQHandler;77
IMPORT DMA2_Channel1_IRQHandler;78
IMPORT DMA2_Channel2_IRQHandler;79
IMPORT DMA2_Channel3_IRQHandler;80
IMPORT DMA2_Channel4_5_IRQHandler;81
AREA RESET, DATA, READONLY;82
EXPORT __Vectors;83
__Vectors;84
DCD __initial_sp;85
DCD Reset_Handler;86
DCD NMIException;87
DCD HardFaultException;88
DCD MemManageException;89
DCD BusFaultException;90
DCD UsageFaultException;91
DCD 0;92
DCD 0;93
DCD 0;94
DCD 0;95
DCD SVCHandler;96
DCD DebugMonitor;97
DCD 0;98
DCD PendSVC;99
DCD SysTickHandler;100
DCD WWDG_IRQHandler;101
DCD PVD_IRQHandler;102
DCD TAMPER_IRQHandler;103
DCD RTC_IRQHandler;104
DCD FLASH_IRQHandler;105
DCD RCC_IRQHandler;106
DCD EXTI0_IRQHandler;107
DCD EXTI1_IRQHandler;108
DCD EXTI2_IRQHandler;109
DCD EXTI3_IRQHandler;110
DCD EXTI4_IRQHandler;111
DCD DMA1_Channel1_IRQHandler;112
DCD DMA1_Channel2_IRQHandler;113
DCD DMA1_Channel3_IRQHandler;114
DCD DMA1_Channel4_IRQHandler;115
DCD DMA1_Channel5_IRQHandler;116
DCD DMA1_Channel6_IRQHandler;117
DCD DMA1_Channel7_IRQHandler;118
DCD ADC1_2_IRQHandler;119
DCD USB_HP_CAN_TX_IRQHandler;120
DCD USB_LP_CAN_RX0_IRQHandler;121
DCD CAN_RX1_IRQHandler;122
DCD CAN_SCE_IRQHandler;123
DCD EXTI9_5_IRQHandler;124
DCD TIM1_BRK_IRQHandler;125
DCD TIM1_UP_IRQHandler;126
DCD TIM1_TRG_COM_IRQHandler;127
DCD TIM1_CC_IRQHandler;128
DCD TIM2_IRQHandler;129
DCD TIM3_IRQHandler;130
DCD TIM4_IRQHandler;131
DCD I2C1_EV_IRQHandler;132
DCD I2C1_ER_IRQHandler;133
DCD I2C2_EV_IRQHandler;134
DCD I2C2_ER_IRQHandler;135
DCD SPI1_IRQHandler;136
DCD SPI2_IRQHandler;137
DCD USART1_IRQHandler;138
DCD USART2_IRQHandler;139
DCD USART3_IRQHandler;140
DCD EXTI15_10_IRQHandler;141
DCD RTCAlarm_IRQHandler;142
DCD USBWakeUp_IRQHandler;143
DCD TIM8_BRK_IRQHandler;144
DCD TIM8_UP_IRQHandler;145
DCD TIM8_TRG_COM_IRQHandler;146
DCD TIM8_CC_IRQHandler;147
DCD ADC3_IRQHandler;148
DCD FSMC_IRQHandler;149
DCD SDIO_IRQHandler;150
DCD TIM5_IRQHandler;151
DCD SPI3_IRQHandler;152
DCD UART4_IRQHandler;153
DCD UART5_IRQHandler;154
DCD TIM6_IRQHandler;155
DCD TIM7_IRQHandler;156
DCD DMA2_Channel1_IRQHandler;157
DCD DMA2_Channel2_IRQHandler;158
DCD DMA2_Channel3_IRQHandler;159
DCD DMA2_Channel4_5_IRQHandler;160
AREA |.text|, CODE, READONLY;161
Reset_Handler PROC;162
EXPORT Reset_Handler;163
IF DATA_IN_ExtSRAM == 1;164
LDR R0,= 0x00000114;165
LDR R1,= 0x40021014;166
STR R0,[R1];167
LDR R0,= 0x000001E0;168
LDR R1,= 0x40021018;169
STR R0,[R1];170
LDR R0,= 0x44BB44BB;171
LDR R1,= 0x40011400;172
STR R0,[R1];173
LDR R0,= 0xBBBBBBBB;174
LDR R1,= 0x40011404;175
STR R0,[R1];176
LDR R0,= 0xB44444BB;177
LDR R1,= 0x40011800;178
STR R0,[R1];179
LDR R0,= 0xBBBBBBBB;180
LDR R1,= 0x40011804;181
STR R0,[R1];182
LDR R0,= 0x44BBBBBB;183
LDR R1,= 0x40011C00;184
STR R0,[R1];185
LDR R0,= 0xBBBB4444;186
LDR R1,= 0x40011C04;187
STR R0,[R1];188
LDR R0,= 0x44BBBBBB;189
LDR R1,= 0x40012000;190
STR R0,[R1];191
LDR R0,= 0x44444B44;192
LDR R1,= 0x40012004;193
STR R0,[R1];194
LDR R0,= 0x00001011;195
LDR R1,= 0xA0000010;196
STR R0,[R1];197
LDR R0,= 0x00000200;198
LDR R1,= 0xA0000014;199
STR R0,[R1];200
ENDIF;201
IMPORT __main;202
LDR R0, =__main;203
BX R0;204
ENDP;205
ALIGN;206
IF :DEF:__MICROLIB;207
EXPORT __initial_sp;208
EXPORT __heap_base;209
EXPORT __heap_limit;210
ELSE;211
IMPORT __use_two_region_memory;212
EXPORT __user_initial_stackheap;213
__user_initial_stackheap;214
LDR R0, = Heap_Mem;215
LDR R1, = (Stack_Mem + Stack_Size);216
LDR R2, = (Heap_Mem + Heap_Size);217
LDR R3, = Stack_Mem;218
BX LR;219
ALIGN;220
ENDIF;221
END;222
ENDIF;223
END;224
如程序清單一,STM32的啟動代碼一共224行,使用了匯編語言編寫,這其中的主要原因下文將會給出交代?,F在從第一行開始分析:
?第1行:定義是否使用外部SRAM,為1則使用,為0則表示不使用。此語行若用C語言表達則等價于:
#define DATA_IN_ExtSRAM 0
?第2行:定義??臻g大小為0x00000400個字節(jié),即1Kbyte。此語行亦等價于:
#define Stack_Size 0x00000400
?第3行:偽指令AREA,表示
?第4行:開辟一段大小為Stack_Size的內存空間作為棧。
?第5行:標號__initial_sp,表示棧空間頂地址。
?第6行:定義堆空間大小為0x00000400個字節(jié),也為1Kbyte。
?第7行:偽指令AREA,表示
?第8行:標號__heap_base,表示堆空間起始地址。
?第9行:開辟一段大小為Heap_Size的內存空間作為堆。
?第10行:標號__heap_limit,表示堆空間結束地址。
?第11行:告訴編譯器使用THUMB指令集。
?第12行:告訴編譯器以8字節(jié)對齊。
?第13—81行:IMPORT指令,指示后續(xù)符號是在外部文件定義的(類似C語言中的全局變量聲明),而下文可能會使用到這些符號。
?第82行:定義只讀數據段,實際上是在CODE區(qū)(假設STM32從FLASH啟動,則此中斷向量表起始地址即為0x8000000)
?第83行:將標號__Vectors聲明為全局標號,這樣外部文件就可以使用這個標號。
?第84行:標號__Vectors,表示中斷向量表入口地址。
?第85—160行:建立中斷向量表。
?第161行:
?第162行:復位中斷服務程序,PROC…ENDP結構表示程序的開始和結束。
?第163行:聲明復位中斷向量Reset_Handler為全局屬性,這樣外部文件就可以調用此復位中斷服務。
?第164行:IF…ENDIF為預編譯結構,判斷是否使用外部SRAM,在第1行中已定義為“不使用”。
?第165—201行:此部分代碼的作用是設置FSMC總線以支持SRAM,因不使用外部SRAM因此此部分代碼不會被編譯。
?第202行:聲明__main標號。
?第203—204行:跳轉__main地址執(zhí)行。
?第207行:IF…ELSE…ENDIF結構,判斷是否使用DEF:__MICROLIB(此處為不使用)。
?第208—210行:若使用DEF:__MICROLIB,則將__initial_sp,__heap_base,__heap_limit亦即棧頂地址,堆始末地址賦予全局屬性,使外部程序可以使用。
?第212行:定義全局標號__use_two_region_memory。
?第213行:聲明全局標號__user_initial_stackheap,這樣外程序也可調用此標號。
?第214行:標號__user_initial_stackheap,表示用戶堆棧初始化程序入口。
?第215—218行:分別保存棧頂指針和棧大小,堆始地址和堆大小至R0,R1,R2,R3寄存器。
?第224行:程序完畢。
以上便是STM32的啟動代碼的完整解析,接下來對幾個小地方做解釋:
1、AREA指令:偽指令,用于定義代碼段或數據段,后跟屬性標號。其中比較重要的一個標號為“READONLY”或者“READWRITE”,其中“READONLY”表示該段為只讀屬性,聯(lián)系到STM32的內部存儲介質,可知具有只讀屬性的段保存于FLASH區(qū),即0x8000000地址后。而“READONLY”表示該段為“可讀寫”屬性,可知“可讀寫”段保存于SRAM區(qū),即0x2000000地址后。由此可以從第3、7行代碼知道,堆棧段位于SRAM空間。從第82行可知,中斷向量表放置與FLASH區(qū),而這也是整片啟動代碼中最先被放進FLASH區(qū)的數據。因此可以得到一條重要的信息:0x8000000地址存放的是棧頂地址__initial_sp,0x8000004地址存放的是復位中斷向量Reset_Handler(STM32使用32位總線,因此存儲空間為4字節(jié)對齊)。
2、DCD指令:作用是開辟一段空間,其意義等價于C語言中的地址符“&”。因此從第84行開始建立的中斷向量表則類似于使用C語言定義了一個指針數組,其每一個成員都是一個函數指針,分別指向各個中斷服務函數。
3、標號:前文多處使用了“標號”一詞。標號主要用于表示一片內存空間的某個位置,等價于C語言中的“地址”概念。地址僅僅表示存儲空間的一個位置,從C語言的角度來看,變量的地址,數組的地址或是函數的入口地址在本質上并無區(qū)別。
4、第202行中的__main標號并不表示C程序中的main函數入口地址,因此第204行也并不是跳轉至main函數開始執(zhí)行C程序。__main標號表示C/C++標準實時庫函數里的一個初始化子程序__main的入口地址。該程序的一個主要作用是初始化堆棧(對于程序清單一來說則是跳轉__user_initial_stackheap標號進行初始化堆棧的),并初始化映像文件,最后跳轉C程序中的main函數。這就解釋了為何所有的C程序必須有一個main函數作為程序的起點——因為這是由C/C++標準實時庫所規(guī)定的——并且不能更改,因為C/C++標準實時庫并不對外界開發(fā)源代碼。因此,實際上在用戶可見的前提下,程序在第204行后就跳轉至.c文件中的main函數,開始執(zhí)行C程序了。
至此可以總結一下STM32的啟動文件和啟動過程。首先對棧和堆的大小進行定義,并在代碼區(qū)的起始處建立中斷向量表,其第一個表項是棧頂地址,第二個表項是復位中斷服務入口地址。然后在復位中斷服務程序中跳轉??C/C++標準實時庫的__main函數,完成用戶堆棧等的初始化后,跳轉.c文件中的main函數開始執(zhí)行C程序。假設STM32被設置為從內部FLASH啟動(這也是最常見的一種情況),中斷向量表起始地位為0x8000000,則棧頂地址存放于0x8000000處,而復位中斷服務入口地址存放于0x8000004處。當STM32遇到復位信號后,則從0x80000004處取出復位中斷服務入口地址,繼而執(zhí)行復位中斷服務程序,然后跳轉__main函數,最后進入mian函數,來到C的世界。



關鍵詞: STM32啟動過

評論


技術專區(qū)

關閉