基于ARM的嵌入式Linux移植真實(shí)體驗(yàn)(2)――BootLoader
BootLoader 的實(shí)現(xiàn)依賴于CPU的體系結(jié)構(gòu),因此大多數(shù) BootLoader 都分為stage1 和stage2 兩大部分。依賴于CPU體系結(jié)構(gòu)的代碼,比如設(shè)備初始化代碼等,通常都放在 stage1中,而且通常都用匯編語言來實(shí)現(xiàn),以達(dá)到短小精悍的目的。而stage2 則通常用C 語言來實(shí)現(xiàn),這樣可以實(shí)現(xiàn)更復(fù)雜的功能,而且代碼會(huì)具有更好的可讀性和可移植性。
BootLoader 的 stage1 通常包括以下步驟:
Ø 硬件設(shè)備初始化;
Ø 為加載Boot Loader的stage2準(zhǔn)備 RAM 空間;
Ø 拷貝Boot Loader的stage2 到RAM空間中;
Ø 設(shè)置好堆棧;
Ø 跳轉(zhuǎn)到 stage2 的 C 入口點(diǎn)。
Boot Loader的stage2通常包括以下步驟:
Ø 初始化本階段要使用到的硬件設(shè)備;
Ø 檢測(cè)系統(tǒng)內(nèi)存映射(memory map);
Ø 將kernel 映像和根文件系統(tǒng)映像從flash上讀到 RAM 空間中;
Ø 為內(nèi)核設(shè)置啟動(dòng)參數(shù);
Ø 調(diào)用內(nèi)核。
本系統(tǒng)中的BootLoader參照韓國(guó)mizi公司的vivi進(jìn)行修改。
1.開發(fā)環(huán)境
我們購(gòu)買了武漢創(chuàng)維特信息技術(shù)有限公司開發(fā)的具有自主知識(shí)產(chǎn)權(quán)的應(yīng)用于嵌入式軟件開發(fā)的集成軟、硬件開發(fā)平臺(tái)ADT(ARM Development Tools)它為基于ARM 核的嵌入式應(yīng)用提供了一整套完備的開發(fā)方案,包括程序編輯、工程管理和設(shè)置、程序編譯、程序調(diào)試等。
ADT嵌入式開發(fā)環(huán)境由ADT Emulator for ARM 和ADT IDE for ARM組成。ADT Emulator for ARM 通過JTAG 實(shí)現(xiàn)主機(jī)和目標(biāo)機(jī)之間的調(diào)試支持功能。它無需目標(biāo)存儲(chǔ)器,不占用目標(biāo)系統(tǒng)的任何端口資源。目標(biāo)程序直接在目標(biāo)板上運(yùn)行,通過ARM 芯片的JTAG 邊界掃描口進(jìn)行調(diào)試,屬于完全非插入式調(diào)試,其仿真效果接近真實(shí)系統(tǒng)。
ADT IDE for ARM 為用戶提供高效明晰的圖形化嵌入式應(yīng)用軟件開發(fā)環(huán)境,包括一整套完備的面向嵌入式系統(tǒng)的開發(fā)和調(diào)試工具:源碼編輯器、工程管理器、工程編譯器(編譯器、匯編器和連接器)、集成調(diào)試環(huán)境、ADT Emulator for ARM 調(diào)試接口等。其界面同Microsoft Visual Studio 環(huán)境相似,用戶可以在ADT IDE for ARM 集成開發(fā)環(huán)境中創(chuàng)建工程、打開工程,建立、打開和編輯文件,編譯、連接、設(shè)置、運(yùn)行、調(diào)試嵌入式應(yīng)用程序。
ADT嵌入式軟件開發(fā)環(huán)境采用主機(jī)-目標(biāo)機(jī)交叉開發(fā)模型。ADT IDE for ARM 運(yùn)行于主機(jī)端,而ADT Emulator for ARM 實(shí)現(xiàn)ADT IDE for ARM 與目標(biāo)機(jī)之間的連接。開發(fā)時(shí),首先由ADT IDE for ARM 編譯連接生成目標(biāo)代碼,然后建立與ADT Emulator for ARM 之間的調(diào)試通道,調(diào)試通道建立成功后,就可以在ADT IDE for ARM 中通過ADT Emulator for ARM 控制目標(biāo)板實(shí)現(xiàn)目標(biāo)程序的調(diào)試,包括將目標(biāo)代碼下載到目標(biāo)機(jī)中,控制程序運(yùn)行,調(diào)試信息觀察等等。
2.ARM匯編
ARM本身屬于RISC指令系統(tǒng),指令條數(shù)就很少,而其編程又以C等高級(jí)語言為主,我們僅需要在Bootloader的第一階段用到少量匯編指令:
(1)+-運(yùn)算
ADD r0, r1, r2
―― r0 := r1 + r2
SUB r0, r1, r2
―― r0 := r1 - r2
其中的第二個(gè)操作數(shù)可以是一個(gè)立即數(shù):
ADD r3, r3, #1
―― r3 := r3 + 1
第二個(gè)操作數(shù)還可以是位移操作后的結(jié)果:
ADD r3, r2, r1, LSL #3
―― r3 := r2 + 8.r1
(2)位運(yùn)算
AND r0, r1, r2
―― r0 := r1 and r2
ORR r0, r1, r2
―― r0 := r1 or r2
EOR r0, r1, r2
―― r0 := r1 xor r2
BIC r0, r1, r2
―― r0 := r1 and not r2
(3)寄存器搬移
MOV r0, r2
―― r0 := r2
MVN r0, r2
―― r0 := not r2
(4)比較
CMP r1, r2
―― set cc on r1 - r2
CMN r1, r2
―― set cc on r1 + r2
TST r1, r2
―― set cc on r1 and r2
TEQ r1, r2
―― set cc on r1 or r2
這些指令影響CPSR寄存器中的 (N, Z, C, V) 位
(5)內(nèi)存操作
LDR r0, [r1]
―― r0 := mem [r1]
STR r0, [r1]
―― mem [r1] := r0
LDR r0, [r1, #4]
―― r0 := mem [r1+4]
LDR r0, [r1, #4] !
―― r0 := mem [r1+4] r1 := r1 + 4
LDR r0, [r1], #4
―― r0 := mem [r1] r1 := r1 +4
LDRB r0 , [r1]
―― r0 := mem8 [r1]
LDMIA r1, {r0, r2, r5}
―― r0 := mem [r1] r2 := mem [r1+4] r5 := mem [r1+8]
{..} 可以包括r0~r15中的所有寄存器,若包括r15 (PC)將導(dǎo)致程序的跳轉(zhuǎn)。
(6)控制流
例1:
MOV r0, #0 ; initialize counter
LOOP:
ADD r0, r0, #1 ; increment counter
CMP r0, #10 ; compare with limit
BNE LOOP ; repeat if not equal
例2:
CMP r0, #5
ADDNE r1, r1, r0
SUBNE r1, r1, r2
――
if (r0 != 5) {
r1 := r1 + r0 - r2
}
3.BootLoader第一階段
3.1硬件設(shè)備初始化
基本的硬件初始化工作包括:
Ø 屏蔽所有的中斷;
Ø 設(shè)置CPU的速度和時(shí)鐘頻率;
Ø RAM初始化;
Ø 初始化LED
ARM的中斷向量表設(shè)置在0地址開始的8個(gè)字空間中,如下表:
每當(dāng)其中的某個(gè)異常發(fā)生后即將PC值置到相應(yīng)的中斷向量處,每個(gè)中斷向量處放置一個(gè)跳轉(zhuǎn)指令到相應(yīng)的中斷服務(wù)程序去進(jìn)行處理,中斷向量表的程序如下:
@ 0x00: Reset
b Reset
@ 0x04: Undefined instruction exception
UndefEntryPoint:
b HandleUndef
@ 0x08: Software interrupt exception
SWIEntryPoint:
b HandleSWI
@ 0x0c: Prefetch Abort (Instruction Fetch Memory Abort)
PrefetchAbortEnteryPoint:
b HandlePrefetchAbort
@ 0x10: Data Access Memory Abort
DataAbortEntryPoint:
b HandleDataAbort
@ 0x14: Not used
NotUsedEntryPoint:
b HandleNotUsed
@ 0x18: IRQ(Interrupt Request) exception
IRQEntryPoint:
b HandleIRQ
@ 0x1c: FIQ(Fast Interrupt Request) exception
FIQEntryPoint:
b HandleFIQ
復(fù)位時(shí)關(guān)閉看門狗定時(shí)器、屏蔽所有中斷:
Reset:
@ disable watch dog timer
mov r1, #0x53000000
mov r2, #0x0
str r2, [r1]
@ disable all interrupts
mov r1, #INT_CTL_BASE
mov r2, #0xffffffff
str r2, [r1, #oINTMSK]
ldr r2, =0x7ff
str r2, [r1, #oINTSUBMSK]
設(shè)置系統(tǒng)時(shí)鐘:
@init clk
@ 1:2:4
mov r1, #CLK_CTL_BASE
mov r2, #0x3
str r2, [r1, #oCLKDIVN]
mrc p15, 0, r1, c1, c0, 0 @ read ctrl register
orr r1, r1, #0xc0000000 @ Asynchronous
mcr p15, 0, r1, c1, c0, 0 @ write ctrl register
@ now, CPU clock is 200 Mhz
mov r1, #CLK_CTL_BASE
ldr r2, mpll_200mhz
str r2, [r1, #oMPLLCON]
點(diǎn)亮所有的用戶LED:
@ All LED on
mov r1, #GPIO_CTL_BASE
add r1, r1, #oGPIO_F
ldr r2,=0x55aa
str r2, [r1, #oGPIO_CON]
mov r2, #0xff
str r2, [r1, #oGPIO_UP]
mov r2, #0x00
str r2, [r1, #oGPIO_DAT]
設(shè)置(初始化)內(nèi)存映射:
ENTRY(memsetup)
@ initialise the static memory
@ set memory control registers
mov r1, #MEM_CTL_BASE
adrl r2, mem_cfg_val
add r3, r1, #52
1: ldr r4, [r2], #4
str r4, [r1], #4
cmp r1, r3
bne 1b
mov pc, lr
設(shè)置(初始化)UART:
@ set GPIO for UART
mov r1, #GPIO_CTL_BASE
add r1, r1, #oGPIO_H
ldr r2, gpio_con_uart
str r2, [r1, #oGPIO_CON]
ldr r2, gpio_up_uart
str r2, [r1, #oGPIO_UP]
bl InitUART
@ Initialize UART
@
@ r0 = number of UART port
InitUART:
ldr r1, SerBase
mov r2, #0x0
str r2, [r1, #oUFCON]
str r2, [r1, #oUMCON]
mov r2, #0x3
str r2, [r1, #oULCON]
ldr r2, =0x245
str r2, [r1, #oUCON]
#define UART_BRD ((50000000 / (UART_BAUD_RATE * 16)) - 1)
mov r2, #UART_BRD
str r2, [r1, #oUBRDIV]
mov r3, #100
mov r2, #0x0
1: sub r3, r3, #0x1
tst r2, r3
bne 1b
#if 0
mov r2, #U
str r2, [r1, #oUTXHL]
1: ldr r3, [r1, #oUTRSTAT]
and r3, r3, #UTRSTAT_TX_EMPTY
tst r3, #UTRSTAT_TX_EMPTY
bne 1b
mov r2, #0
str r2, [r1, #oUTXHL]
1: ldr r3, [r1, #oUTRSTAT]
and r3, r3, #UTRSTAT_TX_EMPTY
tst r3, #UTRSTAT_TX_EMPTY
bne 1b
#endif
mov pc, lr
此外,vivi還提供了幾個(gè)匯編情況下通過串口打印字符的函數(shù)PrintChar、PrintWord和PrintHexWord:
@ PrintChar : prints the character in R0
@ r0 contains the character
@ r1 contains base of serial port
@ writes ro with XXX, modifies r0,r1,r2
@ TODO : write ro with XXX reg to error handling
PrintChar:
TXBusy:
ldr r2, [r1, #oUTRSTAT]
and r2, r2, #UTRSTAT_TX_EMPTY
tst r2, #UTRSTAT_TX_EMPTY
beq TXBusy
str r0, [r1, #oUTXHL]
mov pc, lr
@ PrintWord : prints the 4 characters in R0
@ r0 contains the binary word
@ r1 contains the base of the serial port
@ writes ro with XXX, modifies r0,r1,r2
@ TODO : write ro with XXX reg to error handling
PrintWord:
mov r3, r0
mov r4, lr
bl PrintChar
mov r0, r3, LSR #8 /* shift word right 8 bits */
bl PrintChar
mov r0, r3, LSR #16 /* shift word right 16 bits */
bl PrintChar
mov r0, r3, LSR #24 /* shift word right 24 bits */
bl PrintChar
mov r0, #r
bl PrintChar
mov r0, #n
bl PrintChar
mov pc, r4
@ PrintHexWord : prints the 4 bytes in R0 as 8 hex ascii characters
@ followed by a newline
@ r0 contains the binary word
@ r1 contains the base of the serial port
@ writes ro with XXX, modifies r0,r1,r2
@ TODO : write ro with XXX reg to error handling
PrintHexWord:
mov r4, lr
mov r3, r0
mov r0, r3, LSR #28
bl PrintHexNibble
mov r0, r3, LSR #24
bl PrintHexNibble
mov r0, r3, LSR #20
bl PrintHexNibble
mov r0, r3, LSR #16
bl PrintHexNibble
mov r0, r3, LSR #12
bl PrintHexNibble
mov r0, r3, LSR #8
bl PrintHexNibble
mov r0, r3, LSR #4
bl PrintHexNibble
mov r0, r3
bl PrintHexNibble
mov r0, #r
bl PrintChar
mov r0, #n
bl PrintChar
mov pc, r4
3.2Bootloader拷貝
配置為從NAND FLASH啟動(dòng),需要將NAND FLASH中的vivi代碼copy到RAM中:
#ifdef CONFIG_S3C2410_NAND_BOOT
bl copy_myself
@ jump to ram
ldr r1, =on_the_ram
add pc, r1, #0
nop
nop
1: b 1b @ infinite loop
#ifdef CONFIG_S3C2410_NAND_BOOT
@
@ copy_myself: copy vivi to ram
@
copy_myself:
mov r10, lr
@ reset NAND
mov r1, #NAND_CTL_BASE
ldr r2, =0xf830 @ initial value
str r2, [r1, #oNFCONF]
ldr r2, [r1, #oNFCONF]
bic r2, r2, #0x800 @ enable chip
str r2, [r1, #oNFCONF]
mov r2, #0xff @ RESET command
strb r2, [r1, #oNFCMD]
mov r3, #0 @ wait
1: add r3, r3, #0x1
cmp r3, #0xa
blt 1b
2: ldr r2, [r1, #oNFSTAT] @ wait ready
tst r2, #0x1
beq 2b
ldr r2, [r1, #oNFCONF]
orr r2, r2, #0x800 @ disable chip
str r2, [r1, #oNFCONF]
@ get read to call C functions (for nand_read())
ldr sp, DW_STACK_START @ setup stack pointer
mov fp, #0 @ no previous frame, so fp=0
@ copy vivi to RAM
ldr r0, =VIVI_RAM_BASE
mov r1, #0x0
mov r2, #0x20000
bl nand_read_ll
tst r0, #0x0
beq ok_nand_read
#ifdef CONFIG_DEBUG_LL
bad_nand_read:
ldr r0, STR_FAIL
ldr r1, SerBase
bl PrintWord
1: b 1b @ infinite loop
#endif
ok_nand_read:
#ifdef CONFIG_DEBUG_LL
ldr r0, STR_OK
ldr r1, SerBase
bl PrintWord
#endif
@ verify
mov r0, #0
ldr r1, =0x33f00000
mov r2, #0x400 @ 4 bytes * 1024 = 4K-bytes
go_next:
ldr r3, [r0], #4
ldr r4, [r1], #4
teq r3, r4
bne notmatch
subs r2, r2, #4
beq done_nand_read
bne go_next
notmatch:
#ifdef CONFIG_DEBUG_LL
sub r0, r0, #4
ldr r1, SerBase
bl PrintHexWord
ldr r0, STR_FAIL
ldr r1, SerBase
bl PrintWord
#endif
1: b 1b
done_nand_read:
#ifdef CONFIG_DEBUG_LL
ldr r0, STR_OK
ldr r1, SerBase
bl PrintWord
#endif
mov pc, r10
@ clear memory
@ r0: start address
@ r1: length
mem_clear:
mov r2, #0
mov r3, r2
mov r4, r2
mov r5, r2
mov r6, r2
mov r7, r2
mov r8, r2
mov r9, r2
clear_loop:
stmia r0!, {r2-r9}
subs r1, r1, #(8 * 4)
bne clear_loop
mov pc, lr
#endif @ CONFIG_S3C2410_NAND_BOOT
3.3進(jìn)入C代碼
首先要設(shè)置堆棧指針sp,堆棧指針的設(shè)置是為了執(zhí)行C語言代碼作好準(zhǔn)備。設(shè)置好堆棧后,調(diào)用C語言的main函數(shù):
@ get read to call C functions
ldr sp, DW_STACK_START @ setup stack pointer
mov fp, #0 @ no previous frame, so fp=0
mov a2, #0 @ set argv to NULL
bl main @ call main
mov pc, #FLASH_BASE @ otherwise, reboot
4. BootLoader第二階段
vivi Bootloader的第二階段又分成了八個(gè)小階段,在main函數(shù)中分別調(diào)用這幾個(gè)小階段的相關(guān)函數(shù):
int main(int argc, char *argv[])
{
int ret;
/*
* Step 1:
*/
putstr("rn");
putstr(vivi_banner);
reset_handler();
/*
* Step 2:
*/
ret = board_init();
if (ret) {
putstr("Failed a board_init() procedurern");
error();
}
/*
* Step 3:
*/
mem_map_init();
mmu_init();
putstr("Succeed memory mapping.rn");
/*
* Now, vivi is running on the ram. MMU is enabled.
*/
/*
* Step 4:
*/
/* initialize the heap area*/
ret = heap_init();
if (ret) {
putstr("Failed initailizing heap regionrn");
error();
}
/* Step 5:
*/
ret = mtd_dev_init();
/* Step 6:
*/
init_priv_data();
/* Step 7:
*/
misc();
init_builtin_cmds();
/* Step 8:
*/
boot_or_vivi();
return 0;
}
STEP1的putstr(vivi_banner)語句在串口輸出一段字符說明vivi的版本、作者等信息,vivi_banner定義為:
const char *vivi_banner =
"VIVI version " VIVI_RELEASE " (" VIVI_COMPILE_BY "@"
VIVI_COMPILE_HOST ") (" VIVI_COMPILER ") " UTS_VERSION "rn";
reset_handler進(jìn)行相應(yīng)的復(fù)位處理:
void
reset_handler(void)
{
int pressed;
pressed = is_pressed_pw_btn();
if (pressed == PWBT_PRESS_LEVEL) {
DPRINTK("HARD RESETrn");
hard_reset_handle();
} else {
DPRINTK("SOFT RESETrn");
soft_reset_handle();
}
}
hard_reset_handle會(huì)clear內(nèi)存,而軟件復(fù)位處理則什么都不做:
static void
hard_reset_handle(void)
{
clear_mem((unsigned long)USER_RAM_BASE, (unsigned long)USER_RAM_SIZE);
}
STEP2進(jìn)行板初始化,設(shè)置時(shí)間和可編程I/O口:
int board_init(void)
{
init_time();
set_gpios();
return 0;
}
STEP3進(jìn)行內(nèi)存映射及MMU初始化:
void mem_map_init(void)
{
#ifdef CONFIG_S3C2410_NAND_BOOT
mem_map_nand_boot();
#else
mem_map_nor();
#endif
cache_clean_invalidate();
tlb_invalidate();
}
S3C2410A的MMU初始化只需要調(diào)用通用的arm920 MMU初始化函數(shù):
static inline void arm920_setup(void)
{
unsigned long ttb = MMU_TABLE_BASE;
__asm__(
/* Invalidate caches */
"mov r0, #0n"
"mcr p15, 0, r0, c7, c7, 0n" /* invalidate I,D caches on v4 */
"mcr p15, 0, r0, c7, c10, 4n" /* drain write buffer on v4 */
"mcr p15, 0, r0, c8, c7, 0n" /* invalidate I,D TLBs on v4 */
/* Load page table pointer */
"mov r4, %0n"
"mcr p15, 0, r4, c2, c0, 0n" /* load page table pointer */
/* Write domain id (cp15_r3) */
"mvn r0, #0n" /* Domains 0, 1 = client */
"mcr p15, 0, r0, c3, c0, 0n" /* load domain access register */
/* Set control register v4 */
"mrc p15, 0, r0, c1, c0, 0n" /* get control register v4 */
/* Clear out unwanted bits (then put them in if we need them) */
/* .RVI ..RS B... .CAM */
"bic r0, r0, #0x3000n" /* ..11 .... .... .... */
"bic r0, r0, #0x0300n" /* .... ..11 .... .... */
"bic r0, r0, #0x0087n" /* .... .... 1... .111 */
/* Turn on what we want */
/* Fault checking enabled */
"orr r0, r0, #0x0002n" /* .... .... .... ..1. */
#ifdef CONFIG_CPU_D_CACHE_ON
"orr r0, r0, #0x0004n" /* .... .... .... .1.. */
#endif
#ifdef CONFIG_CPU_I_CACHE_ON
"orr r0, r0, #0x1000n" /* ...1 .... .... .... */
#endif
/* MMU enabled */
"orr r0, r0, #0x0001n" /* .... .... .... ...1 */
"mcr p15, 0, r0, c1, c0, 0n" /* write control register */
: /* no outputs */
: "r" (ttb) );
}
STEP4設(shè)置堆棧;STEP5進(jìn)行mtd設(shè)備的初始化,記錄MTD分區(qū)信息;STEP6設(shè)置私有數(shù)據(jù);STEP7初始化內(nèi)建命令。
STEP8啟動(dòng)一個(gè)SHELL,等待用戶輸出命令并進(jìn)行相應(yīng)處理。在SHELL退出的情況下,啟動(dòng)操作系統(tǒng):
#define DEFAULT_BOOT_DELAY 0x30000000
void boot_or_vivi(void)
{
char c;
int ret;
ulong boot_delay;
boot_delay = get_param_value("boot_delay", &ret);
if (ret) boot_delay = DEFAULT_BOOT_DELAY;
/* If a value of boot_delay is zero,
* unconditionally call vivi shell */
if (boot_delay == 0) vivi_shell();
/*
* wait for a keystroke (or a button press if you want.)
*/
printk("Press Return to start the LINUX now, any other key for vivin");
c = awaitkey(boot_delay, NULL);
if (((c != r) && (c != n) && (c != ))) {
printk("type "help" for help.n");
vivi_shell();
}
run_autoboot();
return;
}
SHELL中讀取用戶從串口輸出的命令字符串,執(zhí)行該命令:
void
vivi_shell(void)
{
#ifdef CONFIG_SERIAL_TERM
serial_term();
#else
#error there is no terminal.
#endif
}
void serial_term(void)
{
char cmd_buf[MAX_CMDBUF_SIZE];
for (;;) {
printk("%s> ", prompt);
getcmd(cmd_buf, MAX_CMDBUF_SIZE);
/* execute a user command */
if (cmd_buf[0])
exec_string(cmd_buf);
}
}
5.電路板調(diào)試
在電路板的調(diào)試過程中,我們首先要在ADT新建的工程中添加第一階段的匯編代碼head.S文件,修改Link腳本,將代碼和數(shù)據(jù)映射到S3C2410A自帶的0x40000000開始的4KB內(nèi)存空間內(nèi):
SECTIONS
{
. = 0x40000000;
.text : { *(.text) }
Image_RO_Limit = .;
Image_RW_Base = .;
.data : { *(.data) }
.rodata : { *(.rodata) }
Image_ZI_Base = .;
.bss : { *(.bss) }
Image_ZI_Limit = .;
__bss_start__ = .;
__bss_end__ = .;
__EH_FRAME_BEGIN__ = .;
__EH_FRAME_END__ = .;
PROVIDE (__stack = .);
end = .;
_end = .;
.debug_info 0 : { *(.debug_info) }
.debug_line 0 : { *(.debug_line) }
.debug_abbrev 0 : { *(.debug_abbrev)}
.debug_frame 0 : { *(.debug_frame) }
}
借助萬用表、示波器等儀器儀表,調(diào)通SDRAM,并將vivi中自帶的串口、NAND FLASH驅(qū)動(dòng)添加到工程中,調(diào)試通過板上的串口和FLASH。如果板電路的原理與三星公司DEMO板有差距,則vivi中硬件的操作要進(jìn)行相應(yīng)的修改。全部調(diào)試通過后,修改vivi源代碼,重新編譯vivi,將其燒錄入NAND FLASH就可以在復(fù)位后啟動(dòng)這個(gè)Bootloader了。
調(diào)試板上的新增硬件時(shí),宜在ADT中添加相應(yīng)的代碼,在不加載操作系統(tǒng)的情況下,單純地操作這些硬件。如果電路板設(shè)計(jì)有誤,要進(jìn)行飛線和割線等處理。
6.小結(jié)
本章講解了ARM匯編、Bootloader的功能,Bootloader的調(diào)試環(huán)境及ARM電路板的調(diào)試方法。
評(píng)論