基于FPGA的全光纖電流互感器控制電路設(shè)計(jì)
電流互感器作為高壓電網(wǎng)檢測(cè)主要設(shè)備,不僅為電能的計(jì)量提供參數(shù),而且是為繼電保護(hù)提供動(dòng)作的依據(jù)。隨著國(guó)家智能電網(wǎng)和特高壓電網(wǎng)的發(fā)展,傳統(tǒng)電磁式電流互感器逐漸暴露出其致命缺陷,例如高電壓等級(jí)時(shí)絕緣極為困難、更高電壓下易磁飽和導(dǎo)致測(cè)量精度下降等。相比之下,光纖電流互感器具有抗電磁干擾能力強(qiáng)、絕緣可靠、測(cè)量精度高、結(jié)構(gòu)簡(jiǎn)單和體積小巧等諸多優(yōu)點(diǎn),是當(dāng)前研究熱點(diǎn)。作為光纖電流互感器的核心部件,其檢測(cè)和控制電路對(duì)電流檢測(cè)精度和范圍具有非常重要的影響。
本文引用地址:http://m.butianyuan.cn/article/201612/327597.htm目前檢測(cè)和控制電路實(shí)現(xiàn)主要有兩種方案,一種是以數(shù)字信號(hào)處理芯片(DSP)為核心,由于DSP的速度越來(lái)越快,使得DSP成為很多數(shù)據(jù)處理和信號(hào)檢測(cè)方案的首選,但在時(shí)序控制方面是其瓶頸,由于時(shí)序控制精度和速度直接影響光纖電流互感器的檢測(cè)精度,所以該方案控制精度提高有限;另一種是以現(xiàn)場(chǎng)可編程門(mén)陣列(FPGA)和DSP為核心器件,結(jié)合兩者的優(yōu)點(diǎn),利用FPGA來(lái)完成系統(tǒng)時(shí)序控制,DSP實(shí)現(xiàn)各種數(shù)字信號(hào)處理算法,雖然可以獲得非常高的控制精度,但系統(tǒng)結(jié)構(gòu)相對(duì)復(fù)雜,可靠性下降。隨著FPGA技術(shù)的發(fā)展,F(xiàn)PGA不僅被用來(lái)進(jìn)行精密時(shí)序控制,而且可以實(shí)現(xiàn)復(fù)雜數(shù)字信號(hào)處理功能。本文利用FPGA來(lái)實(shí)現(xiàn)精密時(shí)序控制的同時(shí),實(shí)現(xiàn)非常復(fù)雜的信號(hào)處理算法,并以FPGA為核心器件完成光纖電流互感器信號(hào)檢測(cè)和控制電路設(shè)計(jì),利用該電路控制光纖電流互感器傳感頭進(jìn)行電流測(cè)試和標(biāo)定。試驗(yàn)結(jié)果表明,系統(tǒng)控制精度達(dá)到0.2 S級(jí)測(cè)量準(zhǔn)確度的要求。
1 全光纖電流互感器信號(hào)檢測(cè)與控制原理
全光纖電流傳感技術(shù)是利用法拉第效應(yīng)來(lái)實(shí)現(xiàn)電流檢測(cè)的,當(dāng)一束線偏振光通過(guò)處于磁場(chǎng)中的物質(zhì)時(shí),該偏振光的振動(dòng)面會(huì)發(fā)生一定的旋轉(zhuǎn),從而可通過(guò)對(duì)此旋轉(zhuǎn)角的測(cè)量來(lái)獲得磁場(chǎng)及產(chǎn)生磁場(chǎng)的電流的信息,其中振動(dòng)面的旋轉(zhuǎn)角可由式(1)得出:
式中:Φ為磁致法拉第偏轉(zhuǎn)角;V為光纖的Verdet常數(shù);H為磁場(chǎng)強(qiáng)度;l為光與磁場(chǎng)之間相互作用的距離。
法拉第效應(yīng)的本質(zhì)為磁致圓雙折射,其解釋是:線偏振光可以分解為兩束旋向相反的圓偏振光(左旋和右旋),外加磁場(chǎng)使得物質(zhì)對(duì)這兩柬正交圓偏振光的折射率產(chǎn)生差別,導(dǎo)致它們?cè)谖镔|(zhì)中的傳播速度不再一致,這兩束圓偏振光在傳播一段距離后會(huì)產(chǎn)生一定相位差△Φs,使對(duì)應(yīng)的線偏振光的偏振面發(fā)生旋轉(zhuǎn),通過(guò)測(cè)量該相位差就可以獲得磁場(chǎng)及產(chǎn)生磁場(chǎng)的電流信息,同時(shí)已證明該相位差△Φs和法拉第旋轉(zhuǎn)角Φ之間的關(guān)系為△Φs=2Φ。
若光路圍繞通電導(dǎo)體閉合,且當(dāng)磁場(chǎng)H僅由穿過(guò)傳感光纖圈的導(dǎo)體中的電流,產(chǎn)生時(shí),可利用式(1)和安培環(huán)路定律得:
△Φs=2VNnI (2)
式中:△Φs為磁致法拉第相位差;V為光纖的Verdet常數(shù);N為光束環(huán)繞導(dǎo)體的次數(shù);n為傳感光纖圈中導(dǎo)體的根數(shù);I為單根導(dǎo)體上通過(guò)的電流。
由此可看出,兩束正交圓偏振光受法拉第效應(yīng)后產(chǎn)生的相位差大小與光束環(huán)繞導(dǎo)體的次數(shù)和穿過(guò)傳感光纖圈的總電流大小成正比。由于光束繞導(dǎo)體的次數(shù)已知,所以只要測(cè)出△Φs,即可計(jì)算出待測(cè)電流的大小。
2 信號(hào)檢測(cè)與控制電路實(shí)現(xiàn)
信號(hào)檢測(cè)與控制電路的總體框圖如圖1所示。光纖傳感頭將攜帶有相位差信息的光信號(hào)輸入到光電探測(cè)器(相位差與光電探測(cè)器輸出信號(hào)幅度成正比),光電探測(cè)器輸出的電壓信號(hào)首先進(jìn)行隔直處理,再經(jīng)過(guò)放大和濾波后,經(jīng)A/D(模數(shù)轉(zhuǎn)換器)轉(zhuǎn)換為數(shù)字信號(hào),然后送入基于FPGA的數(shù)字信號(hào)處理單元。在FPGA內(nèi)進(jìn)行數(shù)據(jù)解調(diào)、積分和濾波處理,并由階梯波生成算法計(jì)算出階梯波臺(tái)階高度,之后該階梯波與固定周期調(diào)制方波在時(shí)序控制單元控制下疊加,再經(jīng)FPGA控制的D/A(數(shù)模轉(zhuǎn)換器)轉(zhuǎn)換后形成模擬電壓波形,驅(qū)動(dòng)相位調(diào)制器,至此完成系統(tǒng)的一次閉環(huán)反饋。此外,階梯波臺(tái)階高度數(shù)據(jù)經(jīng)數(shù)字濾波后由異步串行收發(fā)器(UART)傳輸?shù)娇刂朴?jì)算機(jī),由于該階梯臺(tái)階高度與待測(cè)電流大小有關(guān),上層軟件通過(guò)簡(jiǎn)單處理就可以得出被測(cè)電流大小。整個(gè)系統(tǒng)的時(shí)序控制由FPGA內(nèi)完成,且要求方波調(diào)制、A/D采集、數(shù)字階梯波反饋、數(shù)據(jù)輸出等的時(shí)序控制具有嚴(yán)格的同步關(guān)系。
圖1 信號(hào)檢測(cè)與控制電路框圖
2.1 前置放大及濾波電路
由于光電探測(cè)器輸出信號(hào)比較弱,而且含有較高頻率的噪聲信息,需要對(duì)其進(jìn)行放大和濾波處理后才能進(jìn)行后續(xù)的A/D轉(zhuǎn)換量化為數(shù)字信號(hào)。因此前置放大及濾波電路對(duì)有用信號(hào)的放大和對(duì)噪聲抑制能力會(huì)影響后續(xù)測(cè)量精度。前置放大電路采用差分運(yùn)放AD8130,該芯片具有非常高的共模抑制比,特別適用于微弱信號(hào)放大中需要低噪聲、低諧波失真和高共模抑制比的應(yīng)用中。光電探測(cè)器輸出的交流有效方波信號(hào)頻率為200 kHz左右,為保證該方波信號(hào)無(wú)失真通過(guò)后端濾波電路,濾波電路的高頻截止頻率必須以不損失20倍的方波基頻信號(hào)的諧波設(shè)計(jì),同時(shí)為避免高頻噪聲進(jìn)入后端采樣量化模塊,高頻截止帶寬不能太寬,本設(shè)計(jì)中采用4 MHz帶寬的π型濾波器實(shí)現(xiàn)前端濾波。
2.2 數(shù)據(jù)采集電路
為保證0.2S級(jí)(即千分之二)測(cè)量準(zhǔn)確度,A/D轉(zhuǎn)換位數(shù)需要達(dá)到10位以上。此外,為保證對(duì)200 kHz方波信號(hào)每個(gè)周期高低電平采樣次數(shù),從而可以通過(guò)累加求平均來(lái)提高采樣精度,需要在每個(gè)周期內(nèi)方波高低電平分別進(jìn)行20次以上采樣后求平均,這就要求模數(shù)轉(zhuǎn)換器采樣率大于8 MS/s.設(shè)計(jì)中保留一定余量采用量化位數(shù)14位、采樣率20 MS/s的模數(shù)轉(zhuǎn)換器 AD9248.該芯片采用多級(jí)的帶有輸出錯(cuò)誤糾正邏輯的差分流水線結(jié)構(gòu),集成了兩個(gè)高性能采樣保持放大器和一個(gè)基準(zhǔn)電壓源,只需要提供控制時(shí)鐘,其轉(zhuǎn)換數(shù)據(jù)在7個(gè)時(shí)鐘之后自動(dòng)出現(xiàn)在數(shù)據(jù)端口,用于精密時(shí)序控制場(chǎng)合非常方便。
2.3 FPGA控制電路
FPGA是光纖電流互感器控制電路實(shí)現(xiàn)信號(hào)檢測(cè)與閉環(huán)控制的核心。如圖1所示,其主要功能是負(fù)責(zé)生成整個(gè)控制系統(tǒng)的控制時(shí)序;完成A/D采集控制及數(shù)據(jù)讀取、存儲(chǔ);對(duì)采集到的數(shù)字信號(hào)按預(yù)定的解調(diào)和積分算法進(jìn)行處理,將處理后的數(shù)據(jù)在發(fā)送到階梯波生成算法的同時(shí),經(jīng)濾波處理之后傳到UART串口控制模塊,完成與計(jì)算機(jī)的數(shù)據(jù)通信;此外還要將階梯波生成算法產(chǎn)生的數(shù)據(jù)與方波數(shù)據(jù)疊加后控制D/A轉(zhuǎn)換器輸出相應(yīng)的模擬信號(hào)。FPGA控制時(shí)序如圖2所示,電路上電復(fù)位后, FPGA程序加載并對(duì)外圍A/D、D/A及其他程控電路及接口初始化;FPGA內(nèi)部時(shí)序控制模塊產(chǎn)生周期5 μs的調(diào)制方波,該調(diào)制方波通過(guò)D/A控制接口輸出到D/A產(chǎn)生同樣周期的模擬方波信號(hào)并控制后端光調(diào)制器上產(chǎn)生±π/2的相移,確保前端光纖傳感部分的相位檢測(cè)靈敏度最高;模數(shù)轉(zhuǎn)換器前端輸入信號(hào)是含有相位差信息的交流信號(hào),該信號(hào)的高低電平差值與相位差成正比,通過(guò)檢測(cè)該信號(hào)的高低電平差值就可以間接獲得當(dāng)前相位差值,從而根據(jù)前面所述理論獲得對(duì)應(yīng)電流大小,該信號(hào)周期與方波周期一致。
FPGA通過(guò)時(shí)序控制單元控制A/D轉(zhuǎn)換器在每個(gè)方波周期內(nèi)對(duì)該信號(hào)高電平和低電平分別進(jìn)行多次采樣求平均后相減,獲得該信號(hào)的解調(diào)信息即相位信息。由于前端光纖傳感部分的相位差為0時(shí)表明實(shí)現(xiàn)一次閉環(huán)控制,因此,上述解調(diào)出的相位信息需要經(jīng)過(guò)階梯波生成算法將相位差信息轉(zhuǎn)換為階梯波臺(tái)階數(shù)據(jù),再經(jīng)過(guò)后端200 kHz固定方波和數(shù)字階梯波疊加生成模塊將該臺(tái)階數(shù)據(jù)與方波數(shù)據(jù)累加輸出到D/A轉(zhuǎn)換器,D/A轉(zhuǎn)換器輸出模擬信號(hào)驅(qū)動(dòng)控制相位調(diào)制器產(chǎn)生抵消上述檢測(cè)到的相位差信息,形成一次閉環(huán)控制。該處設(shè)計(jì)時(shí)應(yīng)設(shè)計(jì)階梯波累加判別程序,當(dāng)階梯波累加數(shù)據(jù)值超過(guò)驅(qū)動(dòng)相位調(diào)制器產(chǎn)生2π相移時(shí),應(yīng)該減去相位調(diào)制器產(chǎn)生2π相移所對(duì)應(yīng)值后再累加。由于該階梯波臺(tái)階的高度反映了被測(cè)電流引起的相位差值,所以該值與被測(cè)電流也成線性關(guān)系,可將該值經(jīng)數(shù)字平滑濾波后由FPGA內(nèi)部設(shè)計(jì)的UART通信接口傳輸?shù)缴蠈涌刂平缑嬗糜谟?jì)算當(dāng)前被測(cè)電流的大小。
圖2 FPGA閉環(huán)控制時(shí)序圖
2.4 數(shù)模轉(zhuǎn)換及驅(qū)動(dòng)電路
該部分功能是把200 kHz固定方波和數(shù)字階梯波疊加生成模塊所輸出的數(shù)字信號(hào)轉(zhuǎn)變?yōu)槟M電壓信號(hào),經(jīng)過(guò)功率驅(qū)動(dòng)部分的放大和幅度調(diào)節(jié)控制相位調(diào)制器(在D/A滿(mǎn)量程輸出時(shí),產(chǎn)生的模擬電壓值為相位控制器半波電壓的兩倍),從而在光纖傳感環(huán)中產(chǎn)生一個(gè)附加的反饋相移,抵消掉本次閉環(huán)控制周期內(nèi)檢測(cè)到的相位差。D/A選擇主要考慮模擬信號(hào)輸出建立時(shí)間、增益誤差、輸出線性度以及分辨率幾個(gè)指標(biāo)。D/A輸出信號(hào)建立時(shí)間不僅對(duì)閉環(huán)控制帶寬具有重要影響,而且當(dāng)其建立時(shí)間較長(zhǎng)時(shí),會(huì)對(duì)輸出階梯波臺(tái)階的前、后沿影響很大,導(dǎo)致模數(shù)轉(zhuǎn)換器前端輸入信號(hào)的尖峰脈沖拉長(zhǎng),而有效采樣時(shí)間窗口變短,因此建立時(shí)間越短越好。D/A的增益誤差和輸出線性度決定了輸出模擬信號(hào)的誤差和線性度,而模擬信號(hào)的誤差和線性度施加在相位調(diào)制器上后或直接影響反饋相位的控制誤差,因此需選擇增益誤差和輸出線性度小的模數(shù)轉(zhuǎn)換器。D/A的分辨率直接決定相位控制的
評(píng)論