步進電機H橋驅動電路設計
電路原理
本文引用地址:http://m.butianyuan.cn/article/201612/329702.htm圖1給出了H橋驅動電路與步進電機AB相繞組連接的電路框圖。
4個開關K1和K4,K2和K3分別受控制信號a,b的控制,當控制信號使開關K1,K4合上,K2,K3斷開時,電流在線圈中的流向如圖1(a),當控制信號使開關K2,K3合上,K1,K4斷開時,電流在線圈中的流向如圖1(b)所示。4個二極管VD1,VD2,VD3,VD4為續(xù)流二極管,它們所起的作用是:以圖1(a)為例,當K1,K4開關受控制由閉合轉向斷開時,由于此時線圈繞組AB上的電流不能突變,仍需按原電流方向流動(即A→B),此時由VD3,VD2來提供回路。因此,電流在K1,K4關斷的瞬間由地→VD3→線圈繞組AB→VD2→電源+Vs形成續(xù)流回路。同理,在圖1(b)中,當開關K2,K3關斷的瞬間,由二極管VD4,VD1提供線圈繞組的續(xù)流,電流回路為地→VD4→線圈繞組BA→VD1→電源+Vs。步進電機驅動器中,實現(xiàn)上述開關功能的
元件在實際電路中常采用功率MOSFET管。
由步進電機H橋驅動電路原理可知,電流在繞組中流動是兩個完全相反的方向。推動級的信號邏輯應使對角線晶體管不能同時導通,以免造成高低壓管的直通。
另外,步進電機的繞組是感性負載,在通電時,隨著電機運行頻率的升高,而過渡的時間常不變,使得繞組電流還沒來得及達到穩(wěn)態(tài)值又被切斷,平均電流變小,輸出力矩下降,當驅動頻率高到一定的時候將產(chǎn)生堵轉或失步現(xiàn)象。因此,步進電機的驅動除了電機的設計盡量地減少繞組電感量外,還要對驅動電源采取措施,也就是提高導通相電流的前后沿陡度以提高電機運行的性能。
步進電機的缺陷是高頻出力不足,低頻振蕩,步進電機的性能除電機自身固有的性能外,驅動器的驅動電源也直接影響電機的特性。要想改善步進電機的頻率特性,就必須提高電源電壓。
電路設計
圖2給出了驅動器AB相線圈功率驅動部分原理圖。
選用的功率MOSFET元件是IRFP460,其,ID=20A,VDss= 500 V,RDS(ON)=0。27Ω。
在圖2中,功率MOSFET管VT1,VT2,VT3,VT4和續(xù)流二極管 VD11,VD19,VD14,VD22相當于圖1中的K1,K2,K3,K4和VD1,VD2,VD3,VD4。功率MOSFET管的控制信號是由TTL邏輯電平a,a,b,b來提供的,其中a與a,b與b在邏輯上互反。
a.驅動電流前后沿的改善
從步進電機的運行特性分析中知道,性能較高的驅動器都要求提供的電流前后沿要陡,以便改善電機的高頻響應。本驅動器中由于功率MOSFET管柵極電容的存在,對該管的驅動電流實際表現(xiàn)為對柵極電容的充、放電。極間電容越大,在開關驅動中所需的驅動電流也越大,為使開關波形具有足夠的上升和下降陡度,驅動電流要具有較大的數(shù)值。如果直接用集電極開路的器件如SN7407驅動功率MOSFET管,則電路在MOSFET管帶感性負載時,上升時間過長,會造成動態(tài)損耗增大。為改進功率MOSFET管的快速開通時間,同時也減少在前級門電路上的功耗,采用圖2虛線框內(nèi)的左下臂驅動電路。
集電極開路器件U14是將TTL電平轉換成CMOS電平的緩沖/驅動器,當U14輸出低電平時,功率MOSFET管VT2的柵極電容通過1N4148被短路至地,這時U14吸收電流的能力受U14內(nèi)部導通管所允許通過的電流限制。而當U14輸出為高電平時,VT2管的柵極通過晶體管V3獲得電壓和電流,充電能力提高,因而開通速度加快。
b.保護功能
圖2虛線框中,1N4744是柵源間的過壓保護齊納二極管,其穩(wěn)壓值為15 V。由于,功率MOSFET管柵源間的阻抗很高,故工作于開關狀態(tài)下的漏源間電壓的突變會通過極間電容耦合到柵極而產(chǎn)生相當幅度的VCS脈沖電壓。這一電壓會引起柵源擊穿造成管子的永久損壞,如果是正方向的VCS脈沖電壓,雖然達不到損壞器件的程度,但會導致器件的誤導通。為此,要適當降低柵極驅動電路的阻抗,在柵源之間并接阻尼電阻或接一個穩(wěn)壓值小于20 V而又接近20V的齊納二極管1N4744,防止柵源開路工作。
功率MOSFET管有內(nèi)接的快恢復二極管。當不接VD11,VD12,VD13,VD14時,假定此時電機AB相繞組由VT1管(和VT4管)驅動,即VT2管(和VB)截止,VT1管(和VT4管)導通,電流經(jīng)VT1管流過繞組。當下一個控制信號使VT1管關斷時,負載繞組的續(xù)流電流經(jīng)VT2的內(nèi)接快恢復二極管從地獲取。此時,VT2管的漏源電壓即是該快恢復二極管的通態(tài)壓降,為一很小的負值。當VT1再次導通時,該快恢復二極管關斷,VT2的漏源電壓迅速上升,直至接近于正電源的電壓+VS,這意味著VT2漏源間要承受很高且邊沿很陡的上升電壓,該上升電壓反向加在VT2管內(nèi)的快恢復二極管兩端,會使快恢復二極管出現(xiàn)恢復效應,即有一個很大的電流流過加有反向電壓的快恢復二極管。為了抑制VT2管內(nèi)的快恢復二極管出現(xiàn)這種反向恢復效應,在圖2電路中接人了VD11,VD12,VD13,VD14。其中,反并聯(lián)快恢復二極管VD11,VD14的作用是為電機AB相繞組提供續(xù)流通路,VD12,VD13是為了使功率MOSFET管VT1,VT2內(nèi)部的快恢復二極管不流過反向電流,以保證VT1,VT2在動態(tài)工作時能起正常的開關作用。VD19,VD20,VD21,VD22的作用亦是同樣的道理。
對圖2電路的分析可知,信號a=1,b=1的情況是不允許存在的,否則將因同時導通從而使電源直接連到地造成功率管的損壞;另外,根據(jù)步進電機運行脈沖分配的要求,VT1,VT2,VT3,VT4經(jīng)常處于交替工作狀態(tài),由于晶體管的關斷過程中有一段存儲時間和電流下降時間,總稱關斷時間,在這段時間內(nèi),晶體管并沒完全關斷。若在此期間,另一個晶體管導通,則造成上、下兩管直通而使電源短路,燒壞晶體管或其他元器件。為了避免這種情況,可采取另加邏輯延時電路,以使H橋電路上、下兩管交替導通時可產(chǎn)生一個“死區(qū)時間”,先關后開,防止上、下兩管直通現(xiàn)象。
結論
本驅動器電源驅動部分線路簡單,通過對電流前后沿的合理設計,降低了開關損耗,改善了電機的高頻特性,并具有多種保護功能,實際使用中效果良好。
評論