在PSoC4平臺上開發(fā)傳感器BLDC電機控制系統(tǒng)
PSoC4內(nèi)部集成有支持比較器模式的運算放大器(Opamp)和可編程IDAC電流源,因此對電機電流的監(jiān)控也可以完全集成到PSoC4片內(nèi)完成,而不需要任何外部有源器件。電機電流經(jīng)采樣電阻后進入片內(nèi)Opamp,放大后作為片內(nèi)比較器的正端輸入,比較器的負端輸入為片內(nèi)IDAC電流源產(chǎn)生的過流閾值基準。比較器輸出的跳變將直接關(guān)斷PWM輸出,保護電機。本文引用地址:http://m.butianyuan.cn/article/201612/330152.htm
對比基于PSoC4的控制方案和當(dāng)前市場上的主流商用方案我們不難發(fā)現(xiàn),PSoC4由于集成了豐富的片內(nèi)模擬和數(shù)字資源,可以完全用片內(nèi)的硬件來完成無刷直流電機的順序換相和電流監(jiān)控,比軟件實現(xiàn)更加快速可靠,且節(jié)省了可觀的片外有源器件的成本。此外,片內(nèi)的UDB還可以直接檢測霍爾傳感器的失效狀態(tài),并迅速保護電機,這也是其它廠商所不具備的重要功能。
5. 基于PSoC4 的無刷直流電機控制系統(tǒng)設(shè)計實例
① 控制原理圖設(shè)計
依據(jù)圖4的控制框圖,我們設(shè)計了圖5所示的在PSoC Creator環(huán)境下的BLDC電機控制原理圖。
霍爾信號經(jīng)I/O引腳后直接輸入UDB換相邏輯表LUT_Cmut直接驅(qū)動三相全橋電路,完成電機的硬件換相。同時霍爾信號也同步輸入另一個UDB邏輯表LUT_Spd,實現(xiàn)霍爾傳感器的失效狀態(tài)檢測并完成電機的速度檢測。
電機電流經(jīng)采樣電路后輸入片內(nèi)運放Opamp_1,經(jīng)運放和濾波后輸入片內(nèi)比較器,與片內(nèi)IDAC產(chǎn)生的過流閾值基準進行比較,反轉(zhuǎn)后將直接關(guān)斷PWM輸出,通過換相邏輯表LUT_Cmut來使電機斷電。
圖5:步進電機控制原理圖
② 控制系統(tǒng)軟件設(shè)計
由于采用了PSoC4片內(nèi)硬件進行換相、霍爾失效檢測和過流檢測保護,因此系統(tǒng)的的軟件設(shè)計較為簡捷,只需讀取用戶命令和完成速度閉環(huán)調(diào)節(jié)等即可。
圖6:主程序流程圖
圖6為控制系統(tǒng)主程序流程框圖。
控制主程序首先初始化和配置PSoC4的內(nèi)部資源,在主循環(huán)中首先檢測用戶的起停命令和速度給定,在執(zhí)行速度閉環(huán)PI調(diào)節(jié)。最后檢測母線電壓狀態(tài)。
③ 控制系統(tǒng)實驗結(jié)果
完成系統(tǒng)前述的系統(tǒng)原理圖和程序設(shè)計后,在PSoC Creator環(huán)境下編譯BLDC電機控制工程,并連接PSoC4開發(fā)板,三相全橋驅(qū)動板與BLDC電機,通電后電機可正常運行。圖7顯示電機運行在4000RPM時的霍爾信號與三相繞組反電動勢波形。通道1,2,3分別為相繞組A,B,C反電動勢波形。
由圖可以看出,BLDC電機運行穩(wěn)定,反電動勢為標準的梯形波。
圖7: 三相霍爾信號與繞組反電動勢波形
6. 小結(jié)
本文主要介紹了如何在Cypress推出的PSoC家族的最新成員PSoC4平臺上開發(fā)有傳感器BLDC電機控制系統(tǒng)。本文的設(shè)計過程說明,PSoC4片內(nèi)集成的豐富資源使BLDC電機的換相和霍爾失效檢測都可以由內(nèi)部硬件來完成,簡化了控制系統(tǒng)的軟件設(shè)計并提高了可靠性。此外,片內(nèi)集成的運放和比較器將電流檢測和保護也放在芯片內(nèi)部完成,使過流檢測反應(yīng)速度更快并進一步降低了成本。因此,用戶可以使用PSoC4設(shè)計出具有優(yōu)異性能和較低價格的有傳感器BLDC電機控制系統(tǒng)和產(chǎn)品。(end)
評論