續(xù)航里程800公里,看IBM研發(fā)7年之久的金屬-空氣電池
IBM從7年前開始研究金屬-空氣電池,其表現(xiàn)究竟如何?阻礙量產(chǎn)的原因何在?
本文引用地址:http://m.butianyuan.cn/article/201612/332494.htm可能很多人都想不到,IBM很早就在開始研究電池技術(shù)。2009年,IBM在加州圣何塞的阿爾馬登研究中心(IBM Almaden Research Center)開始了一項(xiàng)名為Battery 500的項(xiàng)目,目標(biāo)是希望研究出能夠讓電動(dòng)車的續(xù)航里程達(dá)到800公里的電池。
本文兩位作者Winfried W. Wilcke與Ho-Cheol Kim均來自于IBM阿爾馬登研究中心,前一位是納米科技研究負(fù)責(zé)人,后一位是該研究中心能量儲(chǔ)存研究組組長。
原文發(fā)表在IEEE網(wǎng)站,由車云菌編譯,兩位作者共同講述了金屬-空氣電池的優(yōu)點(diǎn)、缺點(diǎn)、在商業(yè)化征途上碰到的各項(xiàng)問題,以及是如何解決的。
為什么要以800公里為目標(biāo)呢?因?yàn)檫@個(gè)數(shù)值是大部分人對(duì)汽車續(xù)航里程的期望最高值,如果電動(dòng)車的續(xù)航里程不能達(dá)到800公里,并且成本能被大多數(shù)人接受,那么電動(dòng)車就少了普及的可能。
所以,我們將這個(gè)數(shù)值設(shè)定為我們Battery 500項(xiàng)目的目標(biāo)。這個(gè)項(xiàng)目從2009年就開始了,由阿爾馬登研究中心主導(dǎo)。此后,IBM與來自歐洲、亞洲以及美國的眾多商業(yè)伙伴、研究院共同進(jìn)行了這項(xiàng)研究。
Battery 500項(xiàng)目基于金屬-空氣技術(shù)。相比于鋰電池,金屬-空氣電池能夠在單位質(zhì)量內(nèi)擁有更多的能量。項(xiàng)目研究至今,依然還需要幾年的時(shí)間才能夠商業(yè)化。但是通過這七年的實(shí)驗(yàn)來看,我們足以認(rèn)為:未來金屬-空氣電池在電動(dòng)車上確有用武之地。
為什么叫金屬-空氣電池?
以鋰-空氣電池為例,要搞清楚這個(gè)問題,先來看看鋰離子電池(即現(xiàn)在常見的鋰電池)與鋰空氣電池的區(qū)別。
下圖為鋰離子電池在充放電時(shí)電池內(nèi)部狀態(tài)示意。傳統(tǒng)鋰離子電池中,正極是碳,而負(fù)極則是由不同的過渡金屬氧化物組成,比如鈷、鎳、錳等。兩個(gè)電極都浸泡在溶有鋰鹽的電解液中。在充放電時(shí),鋰離子會(huì)從一個(gè)電極向另外一個(gè)電極移動(dòng)。移動(dòng)的方向根據(jù)根據(jù)電池狀態(tài)的不同,充電或者放電,而不同。在充放電時(shí),鋰離子最終會(huì)嵌入到電極材料的原子層,因而最終電池的容量大小取決于有多少材料能夠容納鋰離子,即由電極的體積與質(zhì)量決定。
△鋰離子電池充放電過程示意
?鋰-空氣電池有所不同。在金屬-空氣電池中,發(fā)生的是電氣化學(xué)反應(yīng)。在放電過程中,含有鋰的正極釋放出鋰離子,鋰離子向負(fù)極移動(dòng),并在負(fù)極表面與氧氣發(fā)生反應(yīng),形成過氧化鋰(Li2O2)。
鋰離子、電子與氧氣是在多孔碳形成的負(fù)極表面產(chǎn)生反應(yīng),因?yàn)榛瘜W(xué)反應(yīng)并非發(fā)生在負(fù)極上,最終容納鋰離子的并非是負(fù)極材料,因而電池的容量與負(fù)極材料的體積或質(zhì)量并沒有太大關(guān)系,只要有足夠大的表面積即可。
也就是說,鋰-空氣電池的容量并不是由電極的體積與質(zhì)量決定,而是電極的表面積。這就是為什么在鋰空氣電池中,質(zhì)量很小的電極也能夠儲(chǔ)存大量的能量,從而得到較高的能量密度。
△鋰-空氣電池充放電過程示意
當(dāng)然,除了能量密度之外,成本也是一個(gè)很重要的考慮因素。電池的售價(jià)目前在200-300美元/千瓦時(shí),如果按每千瓦時(shí)能跑5-6公里計(jì)算的話,800公里需要一個(gè)150千瓦時(shí)的電池,就需要3萬-4.5萬美元。而一輛寶馬2系的汽車也只需要3.3萬美元。所以,如果想要量產(chǎn)的話,每千瓦時(shí)的價(jià)格必須下降到100美元以下。
鋰-空氣電池商業(yè)化要解決哪些問題?
單純來看鋰與氧氣進(jìn)行氧化還原反應(yīng)時(shí),理論上能夠產(chǎn)生的最大能量密度是3460Wh/kg。拋開電池單元中不進(jìn)行化學(xué)反應(yīng)的那部分,最終能夠達(dá)到的能量密度數(shù)值也很讓人期待。當(dāng)然,同樣會(huì)遇到問題。
鋰-空氣電池的充電過程與常規(guī)鋰離子電池類似,只要在外部加壓就可以實(shí)現(xiàn)。不同的是,鋰空氣電池中,當(dāng)有外部電壓時(shí),過氧化鋰的結(jié)構(gòu)會(huì)破壞,還原成氧氣與鋰離子,鋰離子回到正極。鋰-空氣電池與傳統(tǒng)鋰電池一樣,充放電次數(shù)愈多,在電池內(nèi)部產(chǎn)生的副作用就越大。這些副作用就是影響其量產(chǎn)乃至商業(yè)化的根本所在。
為了了解這些副作用對(duì)電池帶來的影響,我們使用研究中心的電化學(xué)質(zhì)譜儀,去精確測量在每一次充放電循環(huán)中,消耗與產(chǎn)生的氣體量。結(jié)果就發(fā)現(xiàn)了一個(gè)問題:鋰-空氣電池在充電過程中釋放出的氧氣比放電時(shí)消耗的氧氣要少很多。(在試驗(yàn)中,大多使用干氧而不是空氣。)
△IBM研究中心的電化學(xué)質(zhì)譜儀(來源:IBM)
在理想的電池單元中,在放電過程中消耗的氧氣與充電過程中釋放的氧氣質(zhì)量是相等的。但是研究發(fā)現(xiàn)氧氣的釋放量卻變少了,這也就是意味著那些并沒有釋放的氧氣很有可能是與電池單元中的部件進(jìn)行了反應(yīng),比如說融化到電解液之中,電池在發(fā)生內(nèi)部消耗。
在IBM位于蘇黎世的另外一個(gè)實(shí)驗(yàn)室中,我們進(jìn)行了新的試驗(yàn),對(duì)這種自我破壞的化學(xué)反應(yīng)進(jìn)行了跟蹤和計(jì)算機(jī)模擬。最后發(fā)現(xiàn)原因在于有機(jī)電解液上。然后我們針對(duì)這個(gè)問題進(jìn)行了研究,在最新的電池單元中,使用了新的電解液之后,充電時(shí),能夠釋放出放電時(shí)吸收的大部分氧氣。另外,我們也跟蹤了在充放電時(shí)氫氣與水的消耗與產(chǎn)生量,因?yàn)檫@兩種物質(zhì)的存在意味著在這個(gè)電池內(nèi)部很有可能還存在至少一種自我消耗的化學(xué)反應(yīng)。我們現(xiàn)在的電池單元已經(jīng)能夠達(dá)到200次充放電循環(huán),雖然這是讓實(shí)際的充電過程遠(yuǎn)遠(yuǎn)小于理論最大值。
除了這個(gè)問題之外,我們對(duì)于鋰-空氣電池的各個(gè)組件都有了一些關(guān)鍵性發(fā)現(xiàn):
1.正極
與傳統(tǒng)鋰離子電池中的由石墨制成的正極不同,鋰-空氣電池中,含有鋰的正極在充電過程中表面會(huì)發(fā)生一些變化,長出一些類似于苔蘚或者樹狀結(jié)構(gòu),稱之為樹突(Dendrite)。這些樹突是十分危險(xiǎn)的,因?yàn)樗麄兡軌蛟谡?fù)極之間形成導(dǎo)電回路從而產(chǎn)生短路現(xiàn)象。
△鋰-空氣電池正極,在數(shù)十循環(huán)之后,表面產(chǎn)生樹突結(jié)構(gòu)
為了減少樹突的產(chǎn)生,我們使用了一種比較特殊的隔離膜。這種隔離膜由一層包含很多納米級(jí)小孔的材料組成,這些小孔足夠小,并且在膜上均勻分布,能夠允許鋰離子通過,并且壓制樹突的產(chǎn)生。因?yàn)檫@套隔離膜的存在,正極能夠在幾百次充電循環(huán)之后,表面仍然保持平滑。而如果使用傳統(tǒng)的隔離膜,幾次循環(huán)之后就會(huì)產(chǎn)生樹突。如果使用一種含有導(dǎo)電離子的玻璃聚合物,效果會(huì)更好一些。
△鋰-空氣電池正極,使用納米隔離膜之后,表面保持平滑
2.電解液
目前使用的電解液依然會(huì)與氧氣或者充放電循環(huán)中產(chǎn)生的其他化合物發(fā)生反應(yīng),從而被消耗。截止到目前為止,我們還沒有發(fā)現(xiàn)哪種溶劑能夠足夠穩(wěn)定,以便于讓鋰-空氣電池能夠進(jìn)入到商業(yè)化的階段。
3.陰極
在充電過程中,鋰離子可能與負(fù)極發(fā)生反應(yīng)會(huì)產(chǎn)生硝酸鋰。硝酸鋰同樣會(huì)與電解液發(fā)生反應(yīng),消耗電解液并產(chǎn)生二氧化碳。我們在試驗(yàn)中,同樣跟蹤了硝酸鋰的產(chǎn)生量,并采取了一些措施減少它的產(chǎn)生。不過,因?yàn)橐笸饧拥某潆婋妷罕仨毐入姵氐墓ぷ麟妷阂叱鲋辽?00mV以上。過壓會(huì)降低電池的充電效率。我們曾試過將碳換成其他一些金屬氧化物,結(jié)果并沒有太大變化。
4.催化劑
關(guān)于是否要在金屬空氣電池中使用催化劑,贊成者與反對(duì)者已經(jīng)展開了很多次的辯論。使用催化劑能夠明顯減少過壓情況的出現(xiàn),但是同樣催化劑通常也會(huì)加速電解液的消耗。在我們的理論研究中發(fā)生,鋰的氧化和還原反應(yīng)中,活化能是很低的,因而,在鋰-空氣電池中,催化劑并非必須。
5.空氣的制備
雖然電池被叫做鋰空氣電池,但是實(shí)際上我們使用的是干氧。強(qiáng)調(diào)「干」是因?yàn)橹恍枰サ艨諝庵械乃魵馀c二氧化碳的成分即可。而要在商業(yè)化的電池中大批量制備這樣的空氣,那么就需要一套足夠輕便高效穩(wěn)定的空氣凈化系統(tǒng)。從這個(gè)角度考慮,鋰-空氣電池的實(shí)際應(yīng)用最早可能是在公交車、卡車以及其他一些大型車上,只有這些大型車才能夠容納空氣凈化設(shè)備。
現(xiàn)在用于試驗(yàn)的電池單元尺寸還很小,直徑76mm、長13mm,遠(yuǎn)遠(yuǎn)不夠用在電動(dòng)車的標(biāo)準(zhǔn)。所以還需要做的一項(xiàng)很重要的工作就是如何制作更大尺寸的電池單元,并將眾多電池單元打包封裝成一個(gè)電池組,再配上一套電池管理系統(tǒng)。我們也在測試一些不同的尺寸,比如100×100mm的(100mm直徑,100mm長)。
目前這一項(xiàng)目依然停留在最初的關(guān)于材料和化學(xué)反應(yīng)的基礎(chǔ)科學(xué)階段,好在得到的研究結(jié)果是積極的。在我們的研究中,現(xiàn)在能夠達(dá)到的能量密度是鋰的氧化還原反應(yīng)15KWh/kg(使用原碳陰極,5700mAh×2.7V/g),到電池單元中的能量密度大概在800Wh/kg。
鈉-空氣電池:能量密度低,但勝在穩(wěn)定
金屬-空氣電池中,能夠使用的金屬有很多,除了鋰之外,還有鈉和鉀等。這些金屬的逆向反應(yīng)更加容易,而相對(duì)來說更重一些的金屬,比如鎂、鋁、鋅、鐵等已經(jīng)被證實(shí),很難實(shí)現(xiàn)再度充電,所以Battery 500項(xiàng)目最終選擇了研究鋰和鈉兩種金屬。
鈉-空氣電池是另外一種很有意思的組合,雖然相比于鋰-空氣電池來說,可能達(dá)到的能量密度更低,但是它的好處在于更加穩(wěn)定。
之所以能量密度較低,是在于產(chǎn)生的化學(xué)反應(yīng)不同。前面提到在鋰-空氣電池中,鋰與氧氣發(fā)生反應(yīng)產(chǎn)生的是過氧化鋰(Li2O2),但是鈉-空氣電池中,鈉與氧氣反應(yīng)只使用了一個(gè)電子,產(chǎn)生的是超氧化鈉NaO2,而不是過氧化鈉Na2O2。相比較而言,鈉-空氣電池能夠產(chǎn)生的能量密度從理論上來說就減少了一半,理論的能量密度上限是1100wh/kg。
但從另外一個(gè)方面來說,鈉-空氣電池的充電效率要比鋰-空氣電池更高,過壓相當(dāng)?shù)?,還不到20mV(鋰為700mV)。有鑒于此,能夠?qū)㈦姵貑卧墓ぷ麟妷航档偷?V,這樣電池內(nèi)部其他組件的自我消耗能夠降低很多,比如說電解液。我們通過實(shí)驗(yàn)對(duì)其進(jìn)行了測量,并得到了驗(yàn)證。這樣的好處在于電池的穩(wěn)定性相當(dāng)高,在50次充放電循環(huán)之后,電池的容量幾乎沒有改變。
鈉-空氣電池的商用同樣存在一些挑戰(zhàn)。比如,鈉-空氣電池在發(fā)生反應(yīng)時(shí)消耗掉的氧氣是鋰-空氣電池中的兩倍,相當(dāng)于能夠產(chǎn)生同樣功率的活塞發(fā)動(dòng)機(jī)所需要的空氣量。另外,鈉金屬的化學(xué)活性相當(dāng)高,想必很多人都記得在高中課堂上化學(xué)老師做的演示,一小塊鈉扔進(jìn)水里,就會(huì)發(fā)生劇烈的化學(xué)反應(yīng)。
不過,鋰是一種稀有金屬,而且并不便宜。但是鈉卻是常見金屬,成本極低。相同尺寸的鈉-空氣電池中材料的成本還不到鋰-空氣電池中的十分之一。雖然從長遠(yuǎn)角度考慮,鋰-空氣 電池將會(huì)有更好的性能,但是綜合考慮穩(wěn)定性與成本,比能量同樣不低的鈉-空氣電池將會(huì)是從現(xiàn)在的電池到未來的更好選擇。
評(píng)論