數(shù)字示波器進行多域測量的方法
基帶數(shù)字信號、射頻信號和模擬信號是相互關聯(lián)和依存的,但是基于傳統(tǒng)的調試方法,人們常常無法描述或捕捉它們之間的關系。采用微控制器實現(xiàn)的RF信號反饋控制、低速串行總線、嚴格的時序關系,以及RF和數(shù)字信號之間電磁干擾等都是原型設計階段令人頭痛的問題。
本文引用地址:http://m.butianyuan.cn/article/201701/336894.htm通??梢允褂脭?shù)字示波器分析這些信號所產生的問題,但是大多數(shù)開發(fā)人員卻試圖尋找其它的儀器。雖然最終可能完成了工作,但是卻花費了大量時間,還需要非常豐富經驗。將模擬信號、數(shù)字信號和RF信號的測試功能整合在一臺儀器中,可以降低對不同設計項目所需要的時間和專家經驗。
本文介紹的示波器擁有多個模擬通道(既可用于時域又可用于頻域)和數(shù)字通道(用于邏輯分析和協(xié)議分析)。本文描述如何利用該示波器查看和調試系統(tǒng)中的不同信號,以及共同作用使得該系統(tǒng)可以正常工作的大量關鍵因素。
對于大量新型設計來說,頻域分析是一種關鍵的調試功能。但是,頻域分析必須與時域、數(shù)字信號或邏輯通道保持嚴密的同步。頻譜分析對調試工作的價值通常取決于分析速度(更新速度),因此信號的捕捉和發(fā)現(xiàn)極富挑戰(zhàn)性。此外,儀器還必須具備足夠高的頻域和時域靈敏度,以便能夠捕捉到信號,如因電磁干擾或其它干擾所產生的頻域雜散信號等微小信號。為了獲得可以用來調試支持多種信號類型的復雜系統(tǒng)的有價值信息,必須基于時間事件、頻率事件或數(shù)字碼型實現(xiàn)精確觸發(fā)。
快速傅立葉變換
任何信號都是關于時間和幅值的函數(shù)。因此,不僅需要捕捉信號幅值,而且還要捕捉信號如何隨時間而變化。傅立葉變換是將時域函數(shù)變換成頻域頻譜的主要技術。該變換可以為從某個時域波形中采樣的信號給出某個時間點的頻譜快照。它使得瞬時頻譜可以測量,從而可以測量某個信號在任何時刻的頻率分量。據(jù)此,可以觀察頻譜隨時間而發(fā)生的變化,了解什么時候存在以及什么時候不存在干擾,時域事件和頻域事件之間是如何關聯(lián)的。
在離散傅立葉(DFT)變換中,一定數(shù)量時域信號樣點被轉換成一定數(shù)量的頻率樣點,每一個頻率樣點都由時域樣點通過算法函數(shù)計算得出??焖俑盗⑷~(FFT)變換是一種實現(xiàn)離散傅立葉變換的高效方法。該方法類似于離散傅立葉變換,可以將一定數(shù)量的離散采樣變換至頻域。示波器通常利用快速傅立葉變換的采樣技術,將時域采樣變換至頻域。
大多數(shù)現(xiàn)代示波器實現(xiàn)的傳統(tǒng)快速傅立葉變換方法存在一個限制,盡管人們只對一部分頻率范圍感興趣,但是,F(xiàn)FT的計算過程是針對整個采樣信息進行的。這種計算方法效率低下,使得整個過程速度較慢。數(shù)字下變頻(DDC)解決了這一問題,其方法是將目標頻帶寬度下變頻至基帶并以較低采樣率對其重新采樣,實現(xiàn)了在小得多的記錄長度上進行快速傅立葉變換。因此,其計算速度更快、更加接近實時性能,也具備更高靈活性。這種靈活性通??梢赞D變成多域調試應用中所要求的功能。除此之外,由于實際變換是在基帶頻率上完成的,因此,這種方法還可以實現(xiàn)過采樣的優(yōu)點。這進一步改善了在目標頻帶寬度上的信噪比。
由于FFT頻譜產生于原始的時域信號,因此通過對同一信號進行時間和頻率上的分析,可以獲得大量的有用信息。某個信號在時域中可能是穩(wěn)定和正確的,在頻域分析時可以發(fā)現(xiàn)噪聲變大、未知的雜散信號以及其他在時域分析中不易發(fā)現(xiàn)的異常事件。在某些示波器上還可以使用時域選通分析功能。借助該功能,可以實現(xiàn)更強大的檢測功能。通過選通方式進行FFT變換或者限制在某個時間記錄的特定位置作FFT,可以在指定的時間點觀察傅立葉變換,從而有助于確定產生問題的時間點。獲得了干擾信號的周期或頻率之后,可以更加準確、快速排除差錯或者故障。
最后需要指出的是,不將頻譜分析限制在某個特定單一通道上通常也是非常重要的。某些情況下,事件可能影響多個通道的信號,對多個通道同時進行頻譜分析可以提供更多的測試信息。如在時間上相互關聯(lián)的被干擾信號和干擾信號的頻譜分析視圖可以為問題分析提供有力證據(jù)。
動態(tài)范圍
合適地利用FFT實現(xiàn)信號分析,還必須了解示波器的動態(tài)范圍。高動態(tài)范圍、無雜散信號等特點對于正確地進行時域采樣并將其轉換至頻域至關重要。示波器的動態(tài)范圍不可避免地取決于示波器模數(shù)轉換器(ADC)的性能及其有效位數(shù)(ENOB)。有效位數(shù)越多,動態(tài)范圍越高,信噪比(SNR)越大,精度越好。理想ADC可以將給定電壓轉換至2K個量化等級之一;其中,對于8位ADC,K為8,其對應的量化等級有256個。然而,ADC存在偏置誤差和增益誤差、非線性誤差和噪聲,這些均會影響其動態(tài)范圍,從而,使得其有效位數(shù)由8降至4至7之間的某個值。此外,示波器也不僅僅只包括一個模數(shù)轉換器,它還有前端放大器和濾波器等,這些組件都會帶來噪聲,進一步劣化總體ENOB.因此,為了實現(xiàn)可測量動態(tài)范圍的最大化,必須綜合考慮整個信號采樣鏈上的全部組件。
大量示波器采用多個低速ADC的交織采樣技術實現(xiàn)高采樣率。但是,這種方法會帶來交織雜散信號,以及與整個采樣系統(tǒng)中速度最低的ADC的采樣率相關的頻率分量。這些頻率分量及其能量進入儀器后,會形成更強、更多的雜散信號,使得針對精確頻譜信息的測量更加困難。了解頻率信號采樣通道的無雜散動態(tài)范圍,可以有助于獲得理想的測量結果。
最后需要指出的是,整體靈敏度或者模擬前端放大器的增益倍數(shù)對于頻譜分析通道處理小信號(例如,電磁干擾所產生的那些信號)的靈敏度具有決定性作用。一些示波器的設置可以小至1mv/格。但是這些設置可能是基于放大顯示而非真正的放大器增益,因此它們可能存在放大誤差,并且可能會減小示波器的帶寬。為了觀察電磁干擾以及其它干擾信號對帶寬的可能影響,必須將放大器的增益下調至1mV/格。增益為1mv/格的優(yōu)質放大器可以提高對微小信號作FFT分析時的觀察能力。
觸發(fā)和采樣
多域調試和分析的最后一個難點是不同域之間跨域的觸發(fā)和采集機制??鐣r域和頻域采取數(shù)據(jù)的能力對于在設計工作中縮小問題范圍是至關重要的。
大量工程師不由自主地傾向于使用傳統(tǒng)的時域信號觸發(fā)。這些觸發(fā)信號可能包括邊沿、窗口、矮脈沖(runt)和其它波形。盡管它們可能很容易設定,但是用于觀察跨域問題時,基于它們的觸發(fā)方式通常缺乏穩(wěn)定性和可重復性。基于模擬或邏輯通道的觸發(fā)(例如,碼型觸發(fā)),可以有助于縮小捕獲某個異常的范圍。串行總線協(xié)議觸發(fā)也可以用于分析例如CRC錯誤或數(shù)據(jù)包受損等異常事件。利用這些觸發(fā)技術可以可靠地在屏幕上重現(xiàn)相應的錯誤,以進行更加深入的分析。采用頻域視圖觀察受損信號或疑似干擾信號,通常可以找出問題的原因。如果某個時鐘信號的設計頻率為100MHz,如存在不定期影響該時鐘信號諧波頻率的突發(fā)頻率干擾,則可能出現(xiàn)鎖存失敗或者對系統(tǒng)的其它影響。
最后需要指出的是,采用頻域觀察,可以更加容易地發(fā)現(xiàn)某些影響;而且某些時候這些影響只能通過頻域觀察才能發(fā)現(xiàn)。為了定位某個信號中導致系統(tǒng)出錯的、使寬帶噪聲隨機變大的原因,必須使頻率模板測試,其工作的方式與大多數(shù)常見示波器的時域模板相同。如果某個頻域信號進入(干擾)該模板,則示波器可以簡單地停止采樣,并通過頻率、時間回放或者同時進行兩者回放以解析事件、找出其根本原因。此外,這些模板也可以設置為精確的dBm條件,用于模擬EMI測試,對于模板違規(guī)事件可以做進一步分析。
實時示波器
復雜嵌入式系統(tǒng)通常存在大量的測試和調試問題。這些問題的解決要求高速、高靈敏度地同步進行時域和頻域分析。對于該任務,實時示波器平臺是一種良好的工具。但是,所選示波器必須擁有合適的硬件電路和相關工具,以完成合適的多域調試。模擬通道FFT不受通道數(shù)量的限制,是一種極好的選擇。但是,它們必須可以足夠快速地進行FFT才能具有可使用性,實現(xiàn)過采樣、提高信噪比,以達到相當于譜頻分析儀的動態(tài)范圍。優(yōu)良的前端、高ENOB的A/D轉換以及大動態(tài)范圍十分重要,與大增益前端放大器對于小信號測量的重要性類似。跨域觸發(fā)能力將這些功能或特點結合在一起,為解決問題和設計調試共同提供了一種更快、更簡便的方法。
評論