新聞中心

EEPW首頁 > 手機與無線通信 > 設計應用 > 寬帶射頻同軸變換器的匹配電路設計

寬帶射頻同軸變換器的匹配電路設計

作者: 時間:2017-06-12 來源:網(wǎng)絡 收藏

介紹了一種分析同軸線變換器的新方法,建立了理想與通用模型,降低了分析難度和簡化了分析過程。通過研究分析,提出了一種與集總元件相結合的設計方法,通過優(yōu)化同軸線和集總元件的參數(shù),實現(xiàn)放大器的最佳性能。利用該方法設計了一款應用于推挽式功率放大電路的,仿真結果表明,匹配效率高達99.93%.

本文引用地址:http://m.butianyuan.cn/article/201706/352994.htm

阻抗變換器和阻抗匹配網(wǎng)絡已經(jīng)成為射頻電路以及最大功率傳輸系統(tǒng)中的基本部件。為了使寬帶射頻功率放大器的輸入、輸出達到最佳的功率匹配,的設計成為射頻功率放大器的重要任務。要實現(xiàn)寬帶內(nèi)的最大功率傳輸,匹配電路設計非常困難。本文設計的電路就能實現(xiàn)高效率的電路匹配。具有功率容量大、頻帶寬和屏蔽好的特性,廣泛應用于VHF/UHF波段。常見的同軸變換器有1:4和1:9阻抗變換,如圖1所示。但是實際應用中,線阻抗與負載不匹配時,它們的阻抗變換不再簡單看作1:4或1:9.本文通過建立模型,提出一種簡化分析方法。

1 同軸變換器模型

同軸變換器有三個重要參數(shù):阻抗變換比、特征阻抗和電長度。這里用電長度是為了分析方便。當同軸線的介質(zhì)和長度一定時,電長度就是頻率的函數(shù),可以不必考慮頻率。

1.1理想模型

理想的1:4變換器的輸入、輸出阻抗都匹配,每根同軸線的輸入、輸出阻抗等于其特征阻抗Z0,其等效模型如圖2所示。

其源阻抗Zg與ZL負載阻抗變換比為:

圖2和公式(1)表明:變換器的阻抗變換比等于輸入阻抗與輸出阻抗之比。

同軸變換器的輸入阻抗等于同軸線的輸入阻抗并聯(lián),輸出阻抗等于同軸線的輸出阻抗串聯(lián)。

1.2通用模型

由于特征阻抗是實數(shù),而源阻抗與負載阻抗一般都是復數(shù),所以,就不能簡單的用變換比來計算。阻抗匹配就是輸入阻抗等于源阻抗的共軛,實現(xiàn)功率的最大傳輸。特征阻抗為Z0,電長度為E的無耗同軸線接復阻抗的電路如圖3所示。

由于源阻抗與同軸線特征不匹配,電路的反射系數(shù)就不是負載反射系數(shù)。


由于同軸線是無耗的,進入同軸線的功率就等于負載消耗的功率。那就可以把電路簡化只有一個負載Zin,又因為Zg與Zin都是復數(shù)且串聯(lián),就可以把Zg中的虛部等效到Zin中,最后得到反射系數(shù)為:

其中:

當反射系數(shù)為零時,功率可以無反射的傳輸,這時阻抗實現(xiàn)完全匹配。

由公式(2),反射系數(shù)為零可以等效為分子為零,即:

其中:

當E為90o時,可得:

由于特征阻抗為實數(shù),ZLZg*為實數(shù)時,方程才有解或才能完全匹配。當ZL和Zg為實數(shù)時,就是常用的λ/4阻抗變換。

當E不等于900,利用實部與虛部都等于零得方程組:

整理化簡得:

公式(3)說明,不是任意兩個復阻抗都可以完全匹配,必須滿足特征阻抗為正實數(shù);可以并聯(lián)或串聯(lián)電抗元件,使兩個不可能完全匹配的復阻抗完全匹配。

通用模型是結合理想模型和同軸線分析建立,如圖4所示。把1:N同軸變換器等效一根同軸線,利用同軸線的分析結果,更容易獲得特征阻抗和電長度參數(shù)。

特別對于利用同軸變換器設計的匹配電路,可以簡化設計步驟,減少工作量。


2 寬帶匹配電路的設計

通過對同軸變換器的分析,可以通過調(diào)諧特征阻抗和電長度完成阻抗匹配。

但是實際同軸線的特征阻抗是有一定規(guī)格的,不是任意的,而且電長度又是隨頻率變化的,所以采用同軸變換器和集總元件聯(lián)合實現(xiàn)寬帶匹配的方式。

2.1.集總元件匹配電路

復阻抗可以用電阻與電抗串聯(lián)表示,也可以用電阻與電抗并聯(lián)表示,這兩種表示的等效電路如圖5所示。

它們都是指同一個復數(shù),其轉換關系為:

公式4表明,電阻并聯(lián)電抗可以減小其復阻抗的實部,再串聯(lián)電抗抵消其虛部,就可以實現(xiàn)Rp到RS阻抗匹配。所需的電抗值可以通過表達式4計算,且Xp與XS取不同性質(zhì)的元件,如果Xp用電容,XS就用電感。

集總元件實現(xiàn)阻抗匹配原理:電阻并聯(lián)電抗減小其實部,再串聯(lián)電抗抵消其虛部,達到兩個純電路的匹配;當匹配的不是純電阻時,可以采用抵消和吸納虛部的方法實現(xiàn)復阻抗的匹配。

2.2聯(lián)合匹配電路

以Freescale公司MRF6VP2600推挽式的匹配電路設計為例,首先確定匹配電路的基本結構和同軸變換器的阻抗變換,然后再確定特征阻抗、電長度和集總參數(shù)。由于輸入匹配電路設計與輸出匹配電路類似,下面詳細研究輸出匹配電路設計。MRF6VP2600的DATASHEET給的源極-源極的輸出阻抗如圖6所示。

圖6 MRF6VP2600的輸入-輸出阻抗

輸出匹配電路中,由于功率管采用推挽式工作,所以在輸出端加入1:1巴倫實現(xiàn)不平衡-平衡變換。利用通用模型,下面的工作就簡化為同軸線與集總參數(shù)的匹配電路設計。同軸線的特征阻抗和電長度計算公式為:

式中,Er為內(nèi)部填充介質(zhì)的相對介電常數(shù);D為外導體內(nèi)徑;d是內(nèi)導體外徑;為內(nèi)導體系數(shù),單股內(nèi)導體時為1;C為空氣中光的速度;f為工作頻率,L為同軸線的長度。

公式5表明,電長度與頻率呈線性關系,且其長度越短,電長度受頻率的影響越小。


2.3仿真驗證

利用安捷倫公司的ADS工具進行輸出匹配電路設計與仿真,一般可采用大信號S參數(shù)仿真和諧波仿真,由于本文設計用于推挽式工作的匹配電路,所以選用更直觀的諧波平衡仿真。利用同軸線和巴倫的模型進行仿真的電路如圖7所示。

圖7 仿真原理圖

由于圖7的負載阻抗的實部是隨頻率增減而減少,所以在同軸變換器的兩端并聯(lián)電容??梢院苋菀讓﹄娐愤M行手動調(diào)諧和自動優(yōu)化,最后的仿真結果如圖8所示。

圖8 (87.5-108)Mhz匹配阻抗

由圖6,圖8可以得到各頻點的反射系數(shù);再根據(jù)反射系數(shù)與頻率的關系,可以求得匹配電路在工作頻帶的反射系數(shù);最后根據(jù)匹配效率與反射系數(shù)的關系,求得匹配電路的匹配效率。具體結果見表1。

表1 反射系數(shù)與匹配效率的計算結果

從表1可以得到,匹配電路的在工作頻段內(nèi)匹配效率達99.93%,實現(xiàn)了較好的匹配。

3總結

本文建立同軸變換器的理想模型和通用模型,提出一種新穎的和簡單的分析方法。通過分析,同軸線的特征阻抗和電長度對匹配電路的性能有很大影響。設計了一款推挽式的輸出匹配電路,仿真結果表明:匹配效率達99.93%.



評論


相關推薦

技術專區(qū)

關閉