傳感器算法處理:加權(quán)平滑\\簡(jiǎn)單移動(dòng)平均線\\抽取突變
通過(guò)利用先進(jìn)的傳感器庫(kù),智能手機(jī)和平板OEM廠商就能讓開(kāi)發(fā)者能夠追蹤智能手機(jī)和用戶的移動(dòng)軌跡。通過(guò)觀察移動(dòng)軌跡,應(yīng)用程序就能讓用戶與設(shè)備以創(chuàng)新、方便的手勢(shì)進(jìn)行交互。例如,當(dāng)用戶把手機(jī)放在耳朵旁邊的時(shí)候,程序就能自動(dòng)接收音頻指令。
本文引用地址:http://m.butianyuan.cn/article/201710/366215.htm然而,最流行的移動(dòng)應(yīng)用程序卻不常用到傳感器。應(yīng)用程序開(kāi)發(fā)者說(shuō)用傳感器很難,沒(méi)錯(cuò),這是因?yàn)閭鞲衅魇怯脕?lái)度量物理環(huán)境的,但沒(méi)有好的想法或用法,這些測(cè)量經(jīng)常沒(méi)有意義。
現(xiàn)在,傳感器廠商意識(shí)到了算法和軟件才是產(chǎn)品最基本的要素。獨(dú)立的固件開(kāi)發(fā)者開(kāi)發(fā)了傳感器庫(kù),不但能保持傳感器處在校準(zhǔn)狀態(tài)從而提供準(zhǔn)確的導(dǎo)航,還能減輕外界電磁干擾造成的影響。
一、在傳感器使用中,我們常常需要對(duì)傳感器數(shù)據(jù)進(jìn)行各種整理,讓?xiě)?yīng)用獲得更好的效果,以下介紹幾種常用的簡(jiǎn)單處理方法:
1.加權(quán)平滑:平滑和均衡傳感器數(shù)據(jù),減小偶然數(shù)據(jù)突變的影響;
2.抽取突變:去除靜態(tài)和緩慢變化的數(shù)據(jù)背景,強(qiáng)調(diào)瞬間變化;
3.簡(jiǎn)單移動(dòng)平均線:保留數(shù)據(jù)流最近的K個(gè)數(shù)據(jù),取平均值;
二、加權(quán)平滑
使用算法如下:
(新值) = (舊值)*(1 - a) + X * a其中a為設(shè)置的權(quán)值,X為最新數(shù)據(jù),程序?qū)崿F(xiàn)如下:
float ALPHA = 0.1f;
public void onSensorChanged(SensorEvent event){
x = event.values[0];
y = event.values[1];
z = event.values[2];
mLowPassX = lowPass(x,mLowPassX);
mLowPassY = lowPass(x,mLowPassY);
mLowPassZ = lowPass(x,mLowPassZ);
}
private float lowPass(float current,float last){
return last * (1.0f - ALPHA) + current * ALPHA;
}
三、抽取突變
采用上面加權(quán)平滑的逆算法。實(shí)現(xiàn)代碼如下:
public void onSensorChanged(SensorEvent event){
final float ALPHA = 0.8;gravity[0] = ALPHA * gravity[0] + (1-ALPHA) * event.values[0];
gravity[1] = ALPHA * gravity[1] + (1-ALPHA) * event.values[1];
gravity[2] = ALPHA * gravity[2] + (1-ALPHA) * event.values[2];filteredValues[0] = event.values[0] - gravity[0];
filteredValues[1] = event.values[1] - gravity[1];
filteredValues[2] = event.values[2] - gravity[2];
}
四、簡(jiǎn)單移動(dòng)平均線
保留傳感器數(shù)據(jù)流中最近的K個(gè)數(shù)據(jù),返回它們的平均值。k表示平均“窗口”的大??;
實(shí)現(xiàn)代碼如下:
public class MovingAverage{
private float circularBuffer[]; //保存?zhèn)鞲衅髯罱腒個(gè)數(shù)據(jù)
private float avg; //返回到傳感器平均值
private float sum; //數(shù)值中傳感器數(shù)據(jù)的和
private float circularIndex; //傳感器數(shù)據(jù)數(shù)組節(jié)點(diǎn)位置
private int count;public MovingAverage(int k){
circularBuffer = new float[k];
count= 0;
circularIndex = 0;
avg = 0;
sum = 0;
}
public float getValue(){
return arg;
}
public long getCount(){
return count;
}
private void primeBuffer(float val){
for(int i=0;i《circularbuffer.length;++i){
circularBuffer[i] = val;
sum += val;
}
}
private int nexTIndex(int curIndex){
if(curIndex + 1 》= circularBuffer.length){
return 0;
}
return curIndex + 1;
}
public void pushValue(float x){
if(0 == count++){
primeBuffer(x);
}
float lastValue = circularBuffer[circularIndex];
circularBuffer[circularIndex] = x; //更新窗口中傳感器數(shù)據(jù)
sum -= lastValue; //更新窗口中傳感器數(shù)據(jù)和
sum += x;
avg = sum / circularBuffer.length; //計(jì)算得傳感器平均值
circularIndex = nexTIndex(circularIndex);
}
}
評(píng)論