新聞中心

EEPW首頁 > 電源與新能源 > 設(shè)計應(yīng)用 > 電源小貼士:教你用分立組件設(shè)計穩(wěn)健低成本的串聯(lián)線性穩(wěn)壓器

電源小貼士:教你用分立組件設(shè)計穩(wěn)健低成本的串聯(lián)線性穩(wěn)壓器

作者: 時間:2017-10-20 來源:網(wǎng)絡(luò) 收藏

  有些應(yīng)用需要寬松的輸出調(diào)節(jié)功能以及不到20mA的電流。對這樣的應(yīng)用來說,采用分立組件打造的是一種低成本高效益的解決方案(圖1)。而對于具有嚴格的輸出調(diào)節(jié)功能并需要更大電流的應(yīng)用,則可使用高性能的低壓差(LDO)。

本文引用地址:http://m.butianyuan.cn/article/201710/366719.htm

  

  圖1:簡單的串聯(lián)穩(wěn)壓器。

  有兩個與圖1所示電路相關(guān)的設(shè)計挑戰(zhàn)。第一個挑戰(zhàn)是要調(diào)節(jié)輸出電壓,第二個挑戰(zhàn)是要在短路事件中安然無恙。在這篇文章中,筆者將討論如何用分立組件設(shè)計穩(wěn)健的。

  下面是一個用來給微控制器供電的示例:

  ·輸入范圍:8.4V至12.6V。

  ·輸出范圍:1.71V至3.7V。

  ·最大負載電流:Io_max = 20mA。

  雙極型NPN晶體管的選擇

  NPN雙極型晶體管Q1是最重要的組件。筆者首先選擇了這種器件。該晶體管應(yīng)符合下列要求:

  ·集電極至發(fā)射極和基極至發(fā)射極的擊穿電壓應(yīng)超過最高輸入電壓Vin_max。

  ·集電極最大允許電流應(yīng)超過最大負載電流Io_max。

  除了這兩項基本要求之外,使用具有備選封裝的組件也是一個好主意。當涉及到功耗時,擁有這種靈活性將會簡化以后的設(shè)計過程。筆者為這種應(yīng)用選擇了具有備選封裝和不同額定功率的NPN晶體管。

  下面是筆者所用NPN晶體管的關(guān)鍵特性。

  當IC = 50mA時:

  直流(DC)電流增益hFE = 60;

  集電極-發(fā)射極最高飽和電壓VCEsat = 300mV;

  基極-發(fā)射極最高飽和電壓VBEsat = 950mV。

  齊納二極管Dz的選擇

  輸出電壓等于反向齊納電壓VZ減去該晶體管基極至發(fā)射極電壓VBE。因此,最低反向齊納電壓應(yīng)符合下述要求(方程式1):

  

 ?。?)

  對于這種應(yīng)用,筆者選用的一個測試條件是IZT = 1mA,并選擇了一個具有以下特性的齊納二極管:

  當Vo_min = 1.71V且VBE_max= 0.95V時,Vz_min應(yīng)大于2.65V。

  當反向電流IZT = 1mA時,最低反向電壓VZ_min = 2.7V。

  當反向電流IZT = 5mA時,最高反向電壓VZ_max = 3.8V。

  基極上拉電阻器RB

  電阻器RB可為齊納二極管和晶體管基極提供電流。在運行條件下,它應(yīng)提供足夠的電流。齊納二極管反向電流IZ應(yīng)大于1mA,正如筆者在“齊納二極管Dz的選擇”部分所討論的。方程式2可估算出運行所需的最大基極電流:

  

 ?。?)

  其中Hfe_min = 60。因此,IB_max ≈ 0.333mA。

  方程式3可計算出RB的值。筆者使用了一個具有1%容差的電阻器。

  

 ?。?)

  故此,RB應(yīng)小于4.26kΩ。筆者使用了一個具有4.22kΩ標準值的電阻器。

  添加一個用于輸出調(diào)節(jié)的虛擬負載電阻器

  當負載電流為零時,輸出電壓達到最大值。當1mA ≤ IZT ≤ 5mA時,VZ最大值為3.8。VBE(on)應(yīng)大于0.1V,這樣該穩(wěn)壓器的輸出就能符合要求。此外,筆者還添加了一個虛擬負載電阻器,以便在無負載條件下汲取集電極電流。

  圖2顯示,VBE(on)可作為集電極電流IC的函數(shù)。當IC = 0.1mA時,VBE(on) 大于0.3V。

  

  圖2:基極-發(fā)射極導(dǎo)通電壓與集電極電流

  方程式4可計算出該虛擬電阻:

  

 ?。?)

  筆者將一個36kΩ的電阻器添加到了該電路,如圖3所示。

  

  圖3:具有虛擬負載電阻器的串聯(lián)穩(wěn)壓器

  為短路事件進行的電流限制

  圖3所示電路的輸出對地短路將產(chǎn)生較大的集電極電流。一項PSPICE仿真結(jié)果表明,集電極電流可高達190mA,見圖4。

  

  圖4:短路仿真結(jié)果

  晶體管Q1的功耗是2.4W。沒有能應(yīng)對該功耗的封裝。

  為了限制短路電流,筆者添加了一個電阻器RC(從VIN到晶體管Q1的集電極),如圖5所示。

  

  圖5:具有限流電阻器的串聯(lián)穩(wěn)壓器

  電阻器RC將會滿足輸出調(diào)節(jié)要求,并能在短路事件中耗散功率。筆者可計算出RC的值:

  

 ?。?)

  VCE_Test是圖1中所用的集電極-發(fā)射極電壓。筆者為RC選擇了一個5%容差的電阻器。采用方程式5,RC應(yīng)小于271Ω。使用這個估計值,在短路事件中方程式6可計算出最壞情況下的RC功耗:

  

  (6)

  該功耗約為0.56W。筆者選擇了一個1W、270Ω的功率電阻器。對于RC短路功耗更高的應(yīng)用,您可把多個電阻器串聯(lián)以分擔功耗。

  組件應(yīng)力分析

  就電阻器RC而言,在具有最大輸入的短路事件中會發(fā)生最壞情況下的功耗。采用方程式6,可計算出最大功耗為0.59W。

  就晶體管Q1而言,因為有限流電阻器RC,所以在短路事件中不會發(fā)生最壞情況下的功耗。在正常運行期間Q1的功耗是集電極電流的函數(shù),如方程式7所示:

  

 

 ?。?)

  當滿足下列條件時,會發(fā)生最壞的情況:

  VIN = VIN_max

  VO = VO_min

  IC = (VIN_max – VO_min)/(2×RC)

  因此,Q1的最大功耗為(VIN_max – VO_min)2/(4×RC)。在本示例中,它是110mW。筆者選擇了一種額定功率為350mW、采用SOT23封裝的小外形晶體管。

  至于RB的最大功耗,在具有最大輸入的短路事件中會發(fā)生最壞的情況??鏡B的電壓等于輸入電壓減去VBE(sat)。最大功耗估計為38mW。

  在這篇文章中,筆者描述了具有分立組件的穩(wěn)健低成本線性穩(wěn)壓器的設(shè)計準則。



關(guān)鍵詞: 線性穩(wěn)壓器

評論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉