新聞中心

EEPW首頁 > 消費電子 > 設(shè)計應(yīng)用 > 如何實現(xiàn)模擬人類視覺注意力的循環(huán)神經(jīng)網(wǎng)絡(luò)?

如何實現(xiàn)模擬人類視覺注意力的循環(huán)神經(jīng)網(wǎng)絡(luò)?

作者: 時間:2018-07-30 來源:網(wǎng)絡(luò) 收藏

我們觀察PPT的時候,面對整個場景,不會一下子處理全部場景信息,而會有選擇地分配注意力,每次關(guān)注不同的區(qū)域,然后將信息整合來得到整個的視覺印象,進而指導(dǎo)后面的眼球運動。將感興趣的東西放在視野中心,每次只處理視野中的部分,忽略視野外區(qū)域,這樣做最大的好處是降低了任務(wù)的復(fù)雜度。

本文引用地址:http://m.butianyuan.cn/article/201807/384538.htm

深度學(xué)習(xí)領(lǐng)域中,處理一張大圖的時候,使用卷積神經(jīng)網(wǎng)絡(luò)的計算量隨著圖片像素的增加而線性增加。如果參考人的視覺,有選擇地分配注意力,就能選擇性地從圖片或視頻中提取一系列的區(qū)域,每次只對提取的區(qū)域進行處理,再逐漸地把這些信息結(jié)合起來,建立場景或者環(huán)境的動態(tài)內(nèi)部表示,這就是本文所要講述的循環(huán)神經(jīng)網(wǎng)絡(luò)注意力模型。

怎么實現(xiàn)的呢?

把注意力問題當(dāng)做一系列agent決策過程,agent可以理解為智能體,這里用的是一個RNN網(wǎng)絡(luò),而這個決策過程是目標(biāo)導(dǎo)向的。簡要來講,每次agent只通過一個帶寬限制的觀察環(huán)境,每一步處理一次數(shù)據(jù),再把每一步的數(shù)據(jù)隨著時間融合,選擇下一次如何配置資源;每一步會接受一個標(biāo)量的獎勵,這個agent的目的就是最大化標(biāo)量獎勵值的總和。

下面我們來具體講解一下這個網(wǎng)絡(luò)。

如上所示,圖A是帶寬傳感器,傳感器在給定位置選取不同分辨率的圖像塊,大一點的圖像塊的邊長是小一點圖像塊邊長的兩倍,然后resize到和小圖像塊一樣的大小,把圖像塊組輸出到B。

圖B是glimpse network,這個網(wǎng)絡(luò)是以theta為參數(shù),兩個全連接層構(gòu)成的網(wǎng)絡(luò),將傳感器輸出的圖像塊組和對應(yīng)的位置信息以線性網(wǎng)絡(luò)的方式結(jié)合到一起,輸出gt。

圖C是循環(huán)神經(jīng)網(wǎng)絡(luò)即RNN的主體,把glimpse network輸出的gt投進去,再和之前內(nèi)部信息ht-1結(jié)合,得到新的狀態(tài)ht,再根據(jù)ht得到新的位置lt和新的行為at,at選擇下一步配置傳感器的位置和數(shù)量,以更好的觀察環(huán)境。在配置傳感器資源的時候,agent也會受到一個獎勵信號r,比如在識別中,正確分類r是1,錯誤分類r是0,agent的目標(biāo)是最大化獎勵信號r的和:

梯度的近似可以表示為:

公式(1)也叫做增強學(xué)習(xí)的規(guī)則,它包括運用當(dāng)前的策略運行agent去獲得交互序列,然后根據(jù)可以增大獎勵信號的行為調(diào)整theta。它的訓(xùn)練過程就是用增強學(xué)習(xí)的方法學(xué)習(xí)具體任務(wù)策略。關(guān)于給定任務(wù),根據(jù)模型做出的一系列決定給出表現(xiàn)評價,最大化表現(xiàn)評價,對其進行端到端的優(yōu)化。

首先為什么要用增強學(xué)習(xí)呢?因為數(shù)據(jù)的狀態(tài)不是非常明確的,不是可以直接監(jiān)督或者非監(jiān)督來訓(xùn)練的,比如機器人的控制很難完全精確。

那么什么是增強學(xué)習(xí)呢?

增強學(xué)習(xí)關(guān)注的是智能體如何在環(huán)境中采取一系列行為,從而獲得最大的累積回報。RL是從環(huán)境狀態(tài)到動作的映射的學(xué)習(xí),我們把這個映射稱為策略。通過增強學(xué)習(xí),一個智能體(agent)應(yīng)該知道在什么狀態(tài)下應(yīng)該采取什么行為。

假設(shè)一個智能體處于下圖(a)中所示的4x3的環(huán)境中。從初始狀態(tài)開始,它需要每個時間選擇一個行為(上、下、左、右)。在智能體到達標(biāo)有+1或-1的目標(biāo)狀態(tài)時與環(huán)境的交互終止。如果環(huán)境是確定的,很容易得到一個解:[上,上,右,右,右]。可惜智能體的行動不是可靠的(類似現(xiàn)實中對機器人的控制不可能完全精確),環(huán)境不一定沿這個解發(fā)展。下圖(b)是一個環(huán)境轉(zhuǎn)移模型的示意,每一步行動以0.8的概率達到預(yù)期,0.2的概率會垂直于運動方向移動,撞到(a)圖中黑色模塊后會無法移動。兩個終止?fàn)顟B(tài)分別有+1和-1的回報,其他狀態(tài)有-0.4的回報。現(xiàn)在智能體要解決的是通過增強學(xué)習(xí)(不斷的試錯、反饋、學(xué)習(xí))找到最優(yōu)的策略(得到最大的回報)。

上述問題可以看作為一個馬爾科夫決策過程,最終的目標(biāo)是通過一步步?jīng)Q策使整體的回報函數(shù)期望最優(yōu)。

提到馬爾科夫,大家通常會立刻想起馬爾可夫鏈(Markov Chain)以及機器學(xué)習(xí)中更加常用的隱式馬爾可夫模型(Hidden Markov Model, HMM)。它們都具有共同的特性便是馬爾可夫性:當(dāng)一個隨機過程在給定現(xiàn)在狀態(tài)及所有過去狀態(tài)情況下,未來狀態(tài)的條件概率分布僅依賴于當(dāng)前狀態(tài);換句話說,在給定現(xiàn)在狀態(tài)時,它與過去狀態(tài)是條件獨立的,那么此隨機過程即具有馬爾可夫性質(zhì)。具有馬爾可夫性質(zhì)的過程通常稱之為馬爾可夫過程。

馬爾可夫決策過程(Markov Decision Process),其也具有馬爾可夫性,與上面不同的是MDP考慮了動作,即系統(tǒng)下個狀態(tài)不僅和當(dāng)前的狀態(tài)有關(guān),也和當(dāng)前采取的動作有關(guān)。

一個馬爾科夫決策過程(Markov Decision Processes, MDP)有五個關(guān)鍵元素組成{S,A,{Psa},γ,R},其中:

這個就是馬爾科夫決策過程。講完馬爾科夫決策之后我們回過頭回顧一下訓(xùn)練的過程:每次agent只通過一個帶寬限制的傳感器觀察環(huán)境,每一步處理一次傳感器數(shù)據(jù),再把每一步的數(shù)據(jù)隨著時間融合,選擇下一次如何配置傳感器資源;每一步會接受一個標(biāo)量的獎勵,這個agent的目的就是最大化標(biāo)量獎勵值的總和。

注意力模型的效果如何

把注意力模型和全連接網(wǎng)絡(luò)以及卷積神經(jīng)網(wǎng)絡(luò)進行比較,實驗證明了模型可以從多個glimpse結(jié)合的信息中成功學(xué)習(xí),并且學(xué)習(xí)的效果優(yōu)于卷積神經(jīng)網(wǎng)絡(luò)。

由于注意力模型可以關(guān)注圖像相關(guān)部分,忽視無關(guān)部分,所以能夠在在有干擾的情況下識別,識別效果也是比其他網(wǎng)絡(luò)要好的。下面這個圖表現(xiàn)的是注意力的路徑,表明網(wǎng)絡(luò)可以避免計算不重要的部分,直接探索感興趣的部分。

基于循環(huán)神經(jīng)網(wǎng)絡(luò)的注意力模型比較有特色的地方就在于:

● 提高計算效率,處理比較大的圖片的時候非常好用;

● 阻塞狀態(tài)下也能識別。

我們講了半天,一個重要的概念沒有講,下面來講講循環(huán)神經(jīng)網(wǎng)絡(luò)RNN。

我們做卷積神經(jīng)網(wǎng)絡(luò)的時候樣本的順序并不受到關(guān)注,而對于自然語言處理,語音識別,手寫字符識別來說,樣本出現(xiàn)的時間順序是非常重要的,RNNs出現(xiàn)的目的是來處理時間序列數(shù)據(jù)。

這個網(wǎng)絡(luò)最直觀的印象是什么呢,就是線多。在傳統(tǒng)的神經(jīng)網(wǎng)絡(luò)模型中,是從輸入層到隱含層再到輸出層,層與層之間是全連接的,每層的節(jié)點之間是無連接的。但是這種普通的神經(jīng)網(wǎng)絡(luò)對于很多問題卻沒有辦法。例如,要預(yù)測句子的下一個單詞,一般需要用到前面的單詞,因為一個句子中前后單詞并不是獨立的。RNNs之所以稱為循環(huán)神經(jīng)網(wǎng)路,即一個序列當(dāng)前的輸出與前面的輸出也有關(guān),網(wǎng)絡(luò)會對前面的信息進行記憶并應(yīng)用于當(dāng)前輸出的計算中,具體的表現(xiàn)形式為即隱藏層之間的節(jié)點不再無連接而是有連接的,并且隱藏層的輸入不僅包括輸入層的輸出還包括上一時刻隱藏層的輸出。理論上,RNNs能夠?qū)θ魏伍L度的序列數(shù)據(jù)進行處理。但是在實踐中,為了降低復(fù)雜性往往假設(shè)當(dāng)前的狀態(tài)只與前面的幾個狀態(tài)相關(guān),下圖便是一個典型的RNNs:

T時刻的輸出是該時刻的輸入和所有歷史共同的結(jié)果,這就達到了對時間序列建模的目的。RNN可以看成一個在時間上傳遞的神經(jīng)網(wǎng)絡(luò),它的深度是時間的長度。對于t時刻來說,它產(chǎn)生的梯度在時間軸上向歷史傳播幾層之后就消失了,根本就無法影響太遙遠的過去。因此,之前說“所有歷史”共同作用只是理想的情況,在實際中,這種影響也就只能維持若干個時間戳。

為了解決時間上的梯度消失,機器學(xué)習(xí)領(lǐng)域發(fā)展出了長短時記憶單元LSTM,通過門的開關(guān)實現(xiàn)時間上記憶功能,并防止梯度消失。

RNN還可以用在生成圖像描述之中,用CNN網(wǎng)絡(luò)做識別和分類,用RNN網(wǎng)絡(luò)產(chǎn)生描述語句,這就是李飛飛的實驗室所研究的內(nèi)容。



評論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉