新聞中心

EEPW首頁(yè) > 嵌入式系統(tǒng) > 設(shè)計(jì)應(yīng)用 > 新手向,STM32輸入輸出總結(jié)

新手向,STM32輸入輸出總結(jié)

作者: 時(shí)間:2018-08-02 來(lái)源:網(wǎng)絡(luò) 收藏

(1)GPIO_Mode_AIN 模擬輸入

本文引用地址:http://m.butianyuan.cn/article/201808/385150.htm

(2)GPIO_Mode_IN_FLOATING 浮空輸入

(3)GPIO_Mode_IPD 下拉輸入

(4)GPIO_Mode_IPU 上拉輸入

(5)GPIO_Mode_Out_OD 開(kāi)漏輸出

(6)GPIO_Mode_Out_PP 推挽輸出

(7)GPIO_Mode_AF_OD 復(fù)用開(kāi)漏輸出

(8)GPIO_Mode_AF_PP 復(fù)用推挽輸出

對(duì)于剛?cè)腴T(mén)的新手,我想這幾個(gè)概念是必須得搞清楚的,平時(shí)接觸的最多的也就是推挽輸出、開(kāi)漏輸出、上拉輸入這三種,但一直未曾對(duì)這些做過(guò)歸納。因此,在這里做一個(gè)總結(jié):

推挽輸出:可以輸出高,低電平,連接數(shù)字器件; 推挽結(jié)構(gòu)一般是指兩個(gè)三極管分別受兩互補(bǔ)信號(hào)的控制,總是在一個(gè)三極管導(dǎo)通的時(shí)候另一個(gè)截止。高低電平由IC的電源低定。

推挽電路是兩個(gè)參數(shù)相同的三極管或MOSFET,以推挽方式存在于電路中,各負(fù)責(zé)正負(fù)半周的波形放大任務(wù),電路工作時(shí),兩只對(duì)稱的功率開(kāi)關(guān)管每次只有一個(gè)導(dǎo)通,所以導(dǎo)通損耗小、效率高。輸出既可以向負(fù)載灌電流,也可以從負(fù)載抽取電流。推拉式輸出級(jí)既提高電路的負(fù)載能力,又提高開(kāi)關(guān)速度。

詳細(xì)理解:

推挽放大器的輸出級(jí)有兩個(gè)“臂”(兩組放大元件),一個(gè)“臂”的電流增加時(shí),另一個(gè)“臂”的電流則減小,二者的狀態(tài)輪流轉(zhuǎn)換。對(duì)負(fù)載而言,好像是一個(gè)“臂”在推,一個(gè)“臂”在拉,共同完成電流輸出任務(wù)。當(dāng)輸出高電平時(shí),也就是下級(jí)負(fù)載門(mén)輸入高電平時(shí),輸出端的電流將是下級(jí)門(mén)從本級(jí)電源經(jīng)VT3拉出。這樣一來(lái),輸出高低電平時(shí),VT3 一路和 VT5 一路將交替工作,從而減低了功耗,提高了每個(gè)管的承受能力。又由于不論走哪一路,管子導(dǎo)通電阻都很小,使RC常數(shù)很小,轉(zhuǎn)變速度很快。因此,推拉式輸出級(jí)既提高電路的負(fù)載能力,又提高開(kāi)關(guān)速度。

開(kāi)漏輸出:輸出端相當(dāng)于三極管的集電極. 要得到高電平狀態(tài)需要上拉電阻才行. 適合于做電流型的驅(qū)動(dòng),其吸收電流的能力相對(duì)強(qiáng)(一般20ma以內(nèi)).

開(kāi)漏形式的電路有以下幾個(gè)特點(diǎn):

1. 利用外部電路的驅(qū)動(dòng)能力,減少IC內(nèi)部的驅(qū)動(dòng)。當(dāng)IC內(nèi)部MOSFET導(dǎo)通時(shí),驅(qū)動(dòng)電流是從外部的VCC流經(jīng)R pull-up ,MOSFET到GND。IC內(nèi)部?jī)H需很下的柵極驅(qū)動(dòng)電流。

2. 一般來(lái)說(shuō),開(kāi)漏是用來(lái)連接不同電平的器件,匹配電平用的,因?yàn)殚_(kāi)漏引腳不連接外部的上拉電阻時(shí),只能輸出低電平,如果需要同時(shí)具備輸出高電平的功能,則需要接上拉電阻,很好的一個(gè)優(yōu)點(diǎn)是通過(guò)改變上拉電源的電壓,便可以改變傳輸電平。比如加上上拉電阻就可以提供TTL/CMOS電平輸出等。(上拉電阻的阻值決定了邏輯電平轉(zhuǎn)換的沿的速度 。阻值越大,速度越低功耗越小,所以負(fù)載電阻的選擇要兼顧功耗和速度。)

3. OPEN-DRAIN提供了靈活的輸出方式,但是也有其弱點(diǎn),就是帶來(lái)上升沿的延時(shí)。因?yàn)樯仙厥峭ㄟ^(guò)外接上拉無(wú)源電阻對(duì)負(fù)載充電,所以當(dāng)電阻選擇小時(shí)延時(shí)就小,但功耗大;反之延時(shí)大功耗小。所以如果對(duì)延時(shí)有要求,則建議用下降沿輸出。

4. 可以將多個(gè)開(kāi)漏輸出的Pin,連接到一條線上。通過(guò)一只上拉電阻,在不增加任何器件的情況下,形成“與邏輯”關(guān)系。這也是I2C,SMBus等總線判斷總線占用狀態(tài)的原理。補(bǔ)充:什么是“線與”?:

在一個(gè)結(jié)點(diǎn)(線)上, 連接一個(gè)上拉電阻到電源 VCC 或 VDD 和 n 個(gè) NPN 或 NMOS 晶體管的集電極 C 或漏極 D, 這些晶體管的發(fā)射極 E 或源極 S 都接到地線上, 只要有一個(gè)晶體管飽和, 這個(gè)結(jié)點(diǎn)(線)就被拉到地線電平上. 因?yàn)檫@些晶體管的基極注入電流(NPN)或柵極加上高電平(NMOS), 晶體管就會(huì)飽和, 所以這些基極或柵極對(duì)這個(gè)結(jié)點(diǎn)(線)的關(guān)系是或非 NOR 邏輯. 如果這個(gè)結(jié)點(diǎn)后面加一個(gè)反相器, 就是或 OR 邏輯.

其實(shí)可以簡(jiǎn)單的理解為:在所有引腳連在一起時(shí),外接一上拉電阻,如果有一個(gè)引腳輸出為邏輯0,相當(dāng)于接地,與之并聯(lián)的回路“相當(dāng)于被一根導(dǎo)線短路”,所以外電路邏輯電平便為0,只有都為高電平時(shí),與的結(jié)果才為邏輯1。

關(guān)于推挽輸出和開(kāi)漏輸出,最后用一幅最簡(jiǎn)單的圖形來(lái)概括:

該圖中左邊的便是推挽輸出模式,其中比較器輸出高電平時(shí)下面的PNP三極管截止,而上面NPN三極管導(dǎo)通,輸出電平VS+;當(dāng)比較器輸出低電平時(shí)則恰恰相反,PNP三極管導(dǎo)通,輸出和地相連,為低電平。右邊的則可以理解為開(kāi)漏輸出形式,需要接上拉。

浮空輸入:對(duì)于浮空輸入,一直沒(méi)找到很權(quán)威的解釋,只好從以下圖中去理解了

由于浮空輸入一般多用于外部按鍵輸入,結(jié)合圖上的輸入部分電路,我理解為浮空輸入狀態(tài)下,IO的電平狀態(tài)是不確定的,完全由外部輸入決定,如果在該引腳懸空的情況下,讀取該端口的電平是不確定的。

上拉輸入/下拉輸入/模擬輸入:這幾個(gè)概念很好理解,從字面便能輕易讀懂。

復(fù)用開(kāi)漏輸出、復(fù)用推挽輸出:可以理解為GPIO口被用作第二功能時(shí)的配置情況(即并非作為通用IO口使用)

最后總結(jié)下使用情況:

中選用IO模式

(1) 浮空輸入_IN_FLOATING ——浮空輸入,可以做KEY識(shí)別,RX1

(2)帶上拉輸入_IPU——IO內(nèi)部上拉電阻輸入

(3)帶下拉輸入_IPD—— IO內(nèi)部下拉電阻輸入

(4) 模擬輸入_AIN ——應(yīng)用ADC模擬輸入,或者低功耗下省電

(5)開(kāi)漏輸出_OUT_OD ——IO輸出0接GND,IO輸出1,懸空,需要外接上拉電阻,才能實(shí)現(xiàn)輸出高電平。當(dāng)輸出為1時(shí),IO口的狀態(tài)由上拉電阻拉高電平,但由于是開(kāi)漏輸出模式,這樣IO口也就可以由外部電路改變?yōu)榈碗娖交虿蛔???梢宰xIO輸入電平變化,實(shí)現(xiàn)C51的IO雙向功能

(6)推挽輸出_OUT_PP ——IO輸出0-接GND, IO輸出1 -接VCC,讀輸入值是未知的

(7)復(fù)用功能的推挽輸出_AF_PP ——片內(nèi)外設(shè)功能(I2C的SCL,SDA)

(8)復(fù)用功能的開(kāi)漏輸出_AF_OD——片內(nèi)外設(shè)功能(TX1,MOSI,MISO.SCK.SS)

設(shè)置實(shí)例:

(1)模擬I2C使用開(kāi)漏輸出_OUT_OD,接上拉電阻,能夠正確輸出0和1;讀值時(shí)先GPIO_SetBits(GPIOB, GPIO_Pin_0);拉高,然后可以讀IO的值;使用GPIO_ReadInputDataBit(GPIOB,GPIO_Pin_0);

(2)如果是無(wú)上拉電阻,IO默認(rèn)是高電平;需要讀取IO的值,可以使用帶上拉輸入_IPU和浮空輸入_IN_FLOATING和開(kāi)漏輸出_OUT_OD;

一、GPIO配置

(1)GPIO_Mode_AIN 模擬輸入

(2)GPIO_Mode_IN_FLOATING 浮空輸入

(3)GPIO_Mode_IPD 下拉輸入

(4)GPIO_Mode_IPU 上拉輸入

(5)GPIO_Mode_Out_OD 開(kāi)漏輸出

(6)GPIO_Mode_Out_PP 推挽輸出

(7)GPIO_Mode_AF_OD 復(fù)用開(kāi)漏輸出

(8)GPIO_Mode_AF_PP 復(fù)用推挽輸出

GPIO_Speed_10MHz 最高輸出速率10MHz

GPIO_Speed_2MHz 最高輸出速率2MHz

GPIO_Speed_50MHz 最高輸出速率50MHz1.1 I/O口的輸出模式下,有3種輸出速度可選(2MHz、10MHz和50MHz),這個(gè)速度是指I/O口驅(qū)動(dòng)電路的響應(yīng)速度而不是輸出信號(hào)的速度,輸出信號(hào)的速度與程序有關(guān)(芯片內(nèi)部在I/O口 的輸出部分安排了多個(gè)響應(yīng)速度不同的輸出驅(qū)動(dòng)電路,用戶可以根據(jù)自己的需要選擇合適的驅(qū)動(dòng)電路)。通過(guò)選擇速度來(lái)選擇不同的輸出驅(qū)動(dòng)模塊,達(dá)到最佳的噪聲 控制和降低功耗的目的。高頻的驅(qū)動(dòng)電路,噪聲也高,當(dāng)不需要高的輸出頻率時(shí),請(qǐng)選用低頻驅(qū)動(dòng)電路,這樣非常有利于提高系統(tǒng)的EMI性能。當(dāng)然如果要輸出較高頻率的信號(hào),但卻選用了較低頻率的驅(qū)動(dòng)模塊,很可能會(huì)得到失真的輸出信號(hào)。關(guān)鍵是GPIO的引腳速度跟應(yīng)用匹配(推薦10倍以上?)。比如:

1.1.1 對(duì)于串口,假如最大波特率只需115.2k,那么用2M的GPIO的引腳速度就夠了,既省電也噪聲小。

1.1.2 對(duì)于I2C接口,假如使用400k波特率,若想把余量留大些,那么用2M的GPIO的引腳速度或許不夠,這時(shí)可以選用10M的GPIO引腳速度。

1.1.3 對(duì)于SPI接口,假如使用18M或9M波特率,用10M的GPIO的引腳速度顯然不夠了,需要選用50M的GPIO的引腳速度。

1.2 GPIO口設(shè)為輸入時(shí),輸出驅(qū)動(dòng)電路與端口是斷開(kāi),所以輸出速度配置無(wú)意義。

1.3 在復(fù)位期間和剛復(fù)位后,復(fù)用功能未開(kāi)啟,I/O端口被配置成浮空輸入模式。

1.4 所有端口都有外部中斷能力。為了使用外部中斷線,端口必須配置成輸入模式。

1.5 GPIO口的配置具有上鎖功能,當(dāng)配置好GPIO口后,可以通過(guò)程序鎖住配置組合,直到下次芯片復(fù)位才能解鎖。2、推挽輸出與開(kāi)漏輸出的區(qū)別推挽輸出:可以輸出高,低電平,連接數(shù)字器件;開(kāi)漏輸出:輸出端相當(dāng)于三極管的集電極. 要得到高電平狀態(tài)需要上拉電阻才行. 適合于做電流型的驅(qū)動(dòng),其吸收電流的能力相對(duì)強(qiáng)(一般20ma以內(nèi)).

推挽結(jié)構(gòu)一般是指兩個(gè)三極管分別受兩互補(bǔ)信號(hào)的控制,總是在一個(gè)三極管導(dǎo)通的時(shí)候另一個(gè)截止.

要實(shí)現(xiàn) 線與 需要用OC(open collector)門(mén)電路.是兩個(gè)參數(shù)相同的三極管或MOSFET,以推挽方式存在于電路中,各負(fù)責(zé)正負(fù)半周的波形放大任務(wù),電路工作時(shí),兩只對(duì)稱的功率開(kāi)關(guān)管每次只有一個(gè)導(dǎo)通,所以導(dǎo)通損耗小,效率高。輸出既可以向負(fù)載灌電流,也可以從負(fù)載抽取電流當(dāng)端口配置為輸出時(shí):

開(kāi)漏模式:輸出 0 時(shí),N-MOS 導(dǎo)通,P-MOS 不被激活,輸出0。

輸出 1 時(shí),N-MOS 高阻, P-MOS 不被激活,輸出1(需要外部上拉電路);此模式可以把端口作為雙向IO使用。

推挽模式:輸出 0 時(shí),N-MOS 導(dǎo)通,P-MOS 高阻 ,輸出0。

輸出 1 時(shí),N-MOS 高阻,P-MOS 導(dǎo)通,輸出1(不需要外部上拉電路)。簡(jiǎn)單來(lái)說(shuō)開(kāi)漏是0的時(shí)候接GND 1的時(shí)候浮空 推挽是0的時(shí)候接GND 1的時(shí)候接VCC3、在中選用IO模式

(1) 浮空輸入_IN_FLOATING ——浮空輸入,可以做KEY識(shí)別,RX1

(2)帶上拉輸入_IPU——IO內(nèi)部上拉電阻輸入

(3)帶下拉輸入_IPD—— IO內(nèi)部下拉電阻輸入

(4) 模擬輸入_AIN ——應(yīng)用ADC模擬輸入,或者低功耗下省電

(5)開(kāi)漏輸出_OUT_OD ——IO輸出0接GND,IO輸出1,懸空,需要外接上拉電阻,才能實(shí)現(xiàn)輸出高電平。當(dāng)輸出為1時(shí),IO口的狀態(tài)由上拉電阻拉高電平,但由于是開(kāi)漏輸出模式,這樣IO口也就可以由外部電路改變?yōu)榈碗娖交虿蛔? ??梢宰xIO輸入電平變化,實(shí)現(xiàn)C51的IO雙向功能

(6)推挽輸出_OUT_PP ——IO輸出0-接GND, IO輸出1 -接VCC,讀輸入值是未知的

(7)復(fù)用功能的推挽輸出_AF_PP ——片內(nèi)外設(shè)功能(I2C的SCL,SDA)

(8)復(fù)用功能的開(kāi)漏輸出_AF_OD——片內(nèi)外設(shè)功能(TX1,MOSI,MISO.SCK.SS)實(shí)例總結(jié):(1)模擬I2C使用開(kāi)漏輸出_OUT_OD,接上拉電阻,能夠正確輸出0和1;讀值時(shí)先

GPIO_SetBits(GPIOB, GPIO_Pin_0);拉高,然后可以讀IO的值;使用

GPIO_ReadInputDataBit(GPIOB,GPIO_Pin_0);(2)如果是無(wú)上拉電阻,IO默認(rèn)是高電平;需要讀取IO的值,可以使用

帶上拉輸入_IPU和浮空輸入_IN_FLOATING和 開(kāi)漏輸出_OUT_OD;4、IO低功耗:關(guān)于模擬輸入低功耗,根據(jù)STM32的低功耗AN(AN2629)及其源文件,在STOP模式下,為了得到盡量低的功耗,確實(shí)把所有的IO(包括非A/D輸入的GPIO)都設(shè)置為模擬輸入5、程序(1)時(shí)鐘:

RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_GPIOB |

RCC_APB2Periph_GPIOC, ENABLE);(2)IO配置:

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8; // IR 輸入

GPIO_InitStructure.GPIO_Speed = GPIO_Speed_10MHz;

GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_OD;GPIO_Init(GPIOC, GPIO_InitStructure);

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0|GPIO_Pin_1|GPIO_Pin_15;

GPIO_InitStructure.GPIO_Speed = GPIO_Speed_2MHz;

GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;

GPIO_Init(GPIOB, GPIO_InitStructure);(3)輸出輸入:輸出0:GPIO_ResetBits(GPIOB, GPIO_Pin_0)

輸出1:GPIO_SetBits(GPIOB, GPIO_Pin_0)

輸入: GPIO_ReadInputDataBit(GPIOB,GPIO_Pin_7)

  • STM32單片機(jī)中文官網(wǎng)
  • STM32單片機(jī)官方開(kāi)發(fā)工具
  • STM32單片機(jī)參考設(shè)計(jì)


關(guān)鍵詞: STM32 輸入輸出

評(píng)論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉