硬核隔離,精準(zhǔn)同步
對(duì)于常見的適配器、充電器等 ACDC 類電源產(chǎn)品來(lái)說(shuō),把可觸碰的輸出端口和 AC 輸入側(cè)的高壓可靠地隔離開來(lái),是涉及到人身安全的頭等大事。
本文引用地址:http://m.butianyuan.cn/article/202211/440198.htm傳統(tǒng)的反激變換器方案通常采用光耦隔離,將位于副邊的輸出電壓和負(fù)載的調(diào)節(jié)信號(hào)通過(guò)光耦傳遞到原邊,以控制反激的主 MOSFET 開關(guān)。
但是,隨著快充技術(shù)的迅速發(fā)展,適配器的功率等級(jí)不斷提升,對(duì)功率密度的追求也越來(lái)越高。在這些新的需求下,傳統(tǒng)的光耦隔離方案遇到了瓶頸。
圖1. 基于光耦的傳統(tǒng)反激方案
在大功率高功率密度的適配器設(shè)計(jì)中,為了保證效率和散熱性能,同步整流是必不可少的。
但是,在傳統(tǒng)的反激方案中,光耦是原副邊之間的信息傳遞唯一通道,而這個(gè)光耦僅僅傳遞了關(guān)于輸出功率調(diào)節(jié)的慢速模擬信號(hào),是沒有辦法實(shí)現(xiàn)原副邊開關(guān)管的實(shí)時(shí)同步的。在這種情況下,同步整流只能通過(guò)檢測(cè)副邊繞組的電壓變化來(lái)控制開關(guān)。
眾所周知,這種方法的弊端在連續(xù)電流模式下尤為明顯。由于同步整流的關(guān)斷時(shí)刻邏輯上在原邊開通時(shí)刻之后,原副邊必然存在一定的共通時(shí)間。如果這個(gè)共通時(shí)間持續(xù)過(guò)長(zhǎng),反激電路的主功率回路中會(huì)產(chǎn)生過(guò)大的反向電流,并在同步整流關(guān)斷后通過(guò)漏感放電造成很高的電壓尖峰。這個(gè)過(guò)高的電壓尖峰不僅增加了同步整流開關(guān)管的選型難度,還犧牲了效率和產(chǎn)品整體的可靠性。
圖2. 傳統(tǒng)反激方案中由于原副邊共通而造成的高電壓尖峰
MPX2002/3 創(chuàng)新性地運(yùn)用了電容隔離技術(shù),將反激控制器和同步整流控制器集成到了同一顆芯片中。
芯片中所使用的隔離電容可以承受 4500Vrms 以上的高壓,能夠?qū)崿F(xiàn) IEC、UL 等相關(guān)安規(guī)認(rèn)證中的加強(qiáng)絕緣等級(jí),而且同樣的隔離技術(shù)在工業(yè)和信息領(lǐng)域中的信號(hào)隔離和隔離式驅(qū)動(dòng)芯片當(dāng)中也有應(yīng)用。因此,這種技術(shù)可以提供非??煽康母綦x性能。
圖3. 基于 MPX2002/3 的反激方案
在此基礎(chǔ)上,得益于電容隔離技術(shù)的高速通訊能力, MPX2002/3 內(nèi)部同時(shí)實(shí)現(xiàn)了輸出功率調(diào)節(jié)和原副邊開關(guān)管實(shí)時(shí)同步的功能。在原邊主開關(guān)管和副邊同步整流管之間始終能夠保證大約 30ns 的死區(qū)時(shí)間,從而有效地避免了原副邊共通所造成的過(guò)高的電壓尖峰。
圖4. 基于 MPX2002/3 的反激方案中的原副邊死區(qū)及受抑制的電壓尖峰
因此,MPX2002/3 有助于實(shí)現(xiàn)更加高效并且可靠性更好的反激方案,尤為適合高功率密度適配器的設(shè)計(jì)。
而這樣的 MPX2002/3 還有一項(xiàng)獨(dú)特的隱藏功能,這里先賣個(gè)關(guān)子,我們將在下期文章中繼續(xù)介紹。
來(lái)源:芯源系統(tǒng)
評(píng)論