新聞中心

EEPW首頁 > 電源與新能源 > 設(shè)計應(yīng)用 > 納伏級靈敏度的低噪聲儀表放大器是如何構(gòu)建的?

納伏級靈敏度的低噪聲儀表放大器是如何構(gòu)建的?

作者: 時間:2024-12-10 來源:ADI 收藏

構(gòu)建具有納伏級靈敏度的電壓測量系統(tǒng)會遇到很多設(shè)計挑戰(zhàn),目前較好的運(yùn)算放大器(比如AD797)可以實(shí)現(xiàn)低于1nV/ Hz的噪聲性能(1 kHz),但低頻率噪聲限制了可以實(shí)現(xiàn)的噪聲性能為大約50 nV p-p(0.1 Hz至10 Hz頻段內(nèi))。
過采樣和平均可以降低寬帶噪聲的rms貢獻(xiàn),但代價是犧牲了更高的數(shù)據(jù)速率,且功耗較高,但過采樣不會降頻譜密度,同時它對1/f區(qū)內(nèi)的噪聲無影響。此外,為避免來自后級的噪聲貢獻(xiàn),就需要采用較大的前端增益,從而降低了系統(tǒng)帶寬。如果沒有隔離,那么所有的接地反彈或干擾都會出現(xiàn)在輸出端,并有可能破壞放大器及其輸入信號的低內(nèi)部噪聲的局面。表現(xiàn)良好的可以簡化設(shè)計,并降低共模電壓、電源波動和溫度漂移引起的殘留誤差。

本文引用地址:http://m.butianyuan.cn/article/202412/465372.htm

低噪聲AD8428提供2000 精確增益,具備解決這些問題所必須的一切特性。AD8428 具有5 ppm/°C最大增益漂移、0.3 μV/°C最大失調(diào)電壓漂移、140 dB最小CMRR至60 Hz(120 dB最小值至50 kHz)、130 dB最小PSRR和3.5 MHz帶寬,適合低電平測量系統(tǒng)。引人注目的是該器件的1.3 nV/ Hz電壓噪聲(1 kHz)和40 nV p-p噪聲(0.1 Hz至10 Hz)性能,在極小信號下具有高信噪比。兩個額外的引腳可讓設(shè)計人員改變增益或增加濾波器來降低噪聲帶寬。這些濾波器引腳還提供了降低噪聲的獨(dú)特方法。

01使用多個AD8428降低系統(tǒng)噪聲

圖1 顯示的電路配置可進(jìn)一步降低系統(tǒng)噪聲。四個AD8428 的輸入和濾波引腳互相短接,降低噪聲至原來的二分之一??梢允褂萌我庖粋€的輸出來保持低輸出阻抗。此電路可以擴(kuò)展從而降低噪聲,降低的倍數(shù)為所用放大器數(shù)的平方根。

圖1. 使用四個AD8428 儀表放大器的降噪電路

每一個AD8428 產(chǎn)生1.3 nV/ Hz折合到輸入(RTI)的典型頻譜噪聲,該噪聲與其他放大器產(chǎn)生的噪聲不相關(guān)。不相關(guān)的噪聲源以方和根(RSS)的方式疊加到濾波器引腳。另一方面,輸入信號為正相關(guān)。每一個AD8428 都響應(yīng)信號在濾波器引腳上生成相同的電壓,因此連接多個AD8428 不會改變電壓,增益保持為2000。

02噪聲分析

針對圖2電路簡化版本的分析表明,將兩個AD8428以此方式連接可以降低噪聲,降低的倍數(shù)為2。每一個AD8428的噪聲都可以在+IN引腳上建模。為了確定總噪聲,可以將輸入接地,并使用疊加來組合噪聲源。

噪聲源en1經(jīng)200差分增益放大,并到達(dá)前置放大器A1的輸出端。就這部分的分析而言,輸入接地時,前置放大器A2的輸出端無噪聲。前置放大器A1每個輸出端與相應(yīng)前置放大器A2輸出端之間的6 kΩ/6 kΩ電阻分頻器可以采用戴維寧等效電路替代:前置放大器A1輸出端噪聲電壓的一半以及一個3 kΩ串聯(lián)電阻。這部分就是降低噪聲的機(jī)制。完整的節(jié)點(diǎn)分析表明,響應(yīng)e n1 的輸出電壓為1000 × e n1 。由于對稱,因此響應(yīng)噪聲電壓e n2 的輸出電壓為1000 × e n2 。e n1 和e n2 幅度都等于e n ,并且將作為RSS疊加,導(dǎo)致總輸出噪聲為1414 × e n 。

圖2. 噪聲分析簡化電路模型

為了將其折合回輸入端,就必須驗(yàn)證增益。假設(shè)在+INPUT和–INPUT之間施加差分信號VIN。A1第一級輸出端的差分電壓等于VIN × 200。同樣的電壓出現(xiàn)在前置放大器A2的輸出端,因此沒有分頻信號進(jìn)入6 kΩ/6 kΩ分頻器,并且節(jié)點(diǎn)分析表明輸出為VIN × 2000。因此,總電壓噪聲RTI為e n × 1414/2000,等效于e n /2。使用AD8428的1.3 nV/Hz典型噪聲密度,則兩個放大器配置所產(chǎn)生的噪聲密度約為0.92 nV/Hz。

使用額外的放大器之后,濾波器引腳處的阻抗發(fā)生改變,進(jìn)一步降低噪聲。例如,如圖1所示使用四個AD8428,則前置放大器輸出端到濾波器引腳之間的6 kΩ電阻后接三個6 kΩ電阻,分別連接每一個無噪聲前置放大器的輸出端。這樣便有效地創(chuàng)建了6 kΩ/2 kΩ電阻分頻器,將噪聲進(jìn)行四分頻處理。因此,正如預(yù)測的那樣,四個放大器的總噪聲便等于en/2。

03進(jìn)行噪聲與功耗的權(quán)衡取舍

主要的權(quán)衡取舍來自功耗與噪聲。AD8428具有極高的噪聲-功耗效率,輸入噪聲密度為1.3 nV/Hz(6.8 mA最大電源電流)。為了進(jìn)行對比,考慮低噪聲AD797運(yùn)算放大器——該器件需要10.5 mA最大電源電流來達(dá)到0.9 nV/Hz。一個分立式G = 2000低噪聲儀表放大器采用兩個AD797運(yùn)算放大器和一個低功耗差動放大器構(gòu)建,需要使用21 mA以上電流,實(shí)現(xiàn)兩個運(yùn)算放大器和一個30.15 Ω電阻貢獻(xiàn)的1.45 nV/Hz噪聲RTI性能。

除了很多放大器并聯(lián)連接使用的電源考慮因素外,設(shè)計人員還必須考慮熱環(huán)境。采用±5 V電源的單個AD8428因內(nèi)部功耗會使溫度上升約8°C。如果很多個器件靠近放置,或者放置在封閉空間,則它們之間會互相傳導(dǎo)熱量,需考慮使用熱管理技術(shù)。04SPICE仿真

SPICE電路仿真雖然不能代替原型制作,但作為驗(yàn)證此類電路構(gòu)想的第一步很有用。若要驗(yàn)證此電路,可以使用simPE仿真器和AD8428 SPICE宏模型仿真兩個器件并聯(lián)時的電路性能。圖3中的仿真結(jié)果表明該電路的表現(xiàn)與預(yù)期一致:增益為2000,噪聲降低30%。

圖3. SPICE仿真結(jié)果

05測量結(jié)果

在工作臺上測量四個AD8428組成的完整電路。測得的RTI噪聲頻譜密度為0.7 nV/Hz (1 kHz),0.1 Hz至10 Hz范圍內(nèi)具有25 nV p-p。這比很多納伏電壓表的噪聲都要更低。測得的噪聲頻譜和峰峰值噪聲分別如圖4和圖5所示。

圖4. 圖1中電路的電壓噪聲頻譜測量值

圖5. 圖1中電路測得的0.1 Hz至10 Hz RTI噪聲

06結(jié)論

納伏級靈敏度目標(biāo)非常難以達(dá)成,會遇到很多設(shè)計挑戰(zhàn)。對于需要低噪聲和高增益的系統(tǒng),AD8428儀表放大器具有實(shí)現(xiàn)高性能設(shè)計所需的特性。此外,該器件獨(dú)特的配置允許將這個不尋常的電路加入其納伏級工具箱內(nèi)。



關(guān)鍵詞: ADI 低噪聲 儀表放大器

評論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉