新聞中心

EEPW首頁 > 模擬技術(shù) > 設計應用 > 紅外圖像的邊緣提取

紅外圖像的邊緣提取

作者: 時間:2012-09-10 來源:網(wǎng)絡 收藏

摘 要:提出了一種基于人眼微動機理的算法。通過模擬眼球的微動,提取的微動邊緣,同時為了減少偽邊緣的產(chǎn)生,對其微動邊緣進行均值濾波處理,最后應用非極大值抑制和雙閾值檢測邊緣連接提取的二值化邊緣。實驗結(jié)果顯示,該算法效果較好,達到了預期的效果。

  傳統(tǒng)算法大多都是基于局部窗口的微分梯度算子,對噪聲敏感,因此不適合處理受噪聲干擾嚴重的圖像。由于人眼微動具有超分辨率的特性,對圖像處理提供了良好的啟示。本文就是根據(jù)人眼微動機理研究圖像邊緣的提取,并通過實驗加以驗證。實驗結(jié)果表明,基于人眼微動機理的圖像算法不但能夠精確提取圖像的邊緣,同時能夠很好地減少圖像中的偽邊緣,具有良好的邊緣提取效果。

  1 人眼微動成像原理

  早在1952年,DITCHBURN和GINSBORG等人就注意到人眼在固視狀態(tài)下具有無意識的微小運動,即人眼微動[5,6],它分為三種模式:高頻振顫、飄移運動和閃動。由于前兩種幅度不大,同時目前的眼球檢測技術(shù)難以精確地測量,因此這里提到的人眼微動主要指閃動。國外學者對眼球微動進行了大量的實驗研究。實驗表明,人眼在停止眼球所有運動的時候,靜止的圖像將突然變模糊繼而消失,眼球微動與視覺的產(chǎn)生存在直接的關(guān)系,且雙目微動優(yōu)于單目微動。近年來,CONDE M等[7]學者通過測量圖像消失或再現(xiàn)前后微動發(fā)生的概率、速率以及振幅的變化,進一步揭示了眼球微動與圖像消失有著直接關(guān)系,微動與固視圖像的清晰度有因果聯(lián)系。

  人眼微動的成像原理[8,9]為:人眼微動使感興趣信息更準確地落入視網(wǎng)膜的中央凹區(qū),信息越精確地落于中央凹區(qū),人眼所感受到的圖像銳化程度越強;人眼微動會使近凹區(qū)反應增強,它們通過橫向連接具有抑制作用的神經(jīng)網(wǎng)絡對中央凹區(qū)的信息進行修正,如一次修正不夠理想,人眼微動會使信息重新更精確地回到中央凹區(qū),同時隨著信息尺度的大小調(diào)整微動幅度,如此反復直到精確地辨識出信息為止。信息尺度越小,微動幅度就越小,反之亦然。同時隨著微動速率的提高,對應視網(wǎng)膜上感受視野的銳化能力就會越強。本文通過對圖像進行平移來近似模擬人眼這種微動機制,并將其應用于紅外圖像的邊緣提取。

  2 算法基本過程

  2.1 算法基本原理

  算法可以理解為有基本運算及規(guī)定的運算順序所構(gòu)成的完整的解題步驟?;蛘呖闯砂凑找笤O計好的有限的確切的計算序列,并且這樣的步驟和序列可以解決一類問題。

  人眼主要依靠微動機制來分辨圖像的邊緣,眼球微動幅度越小,圖像的邊緣越細致,隨著幅度增大,圖像邊緣線條變粗,但是對大尺度邊緣突出能力強于小幅度的情形。人眼微動理論具有強大的邊緣提取能力。結(jié)合視網(wǎng)膜節(jié)細胞對方向的敏感性,首先選擇人眼微動的方向,然后通過微動圖像計算微動方向的邊緣圖像,之后各個微動方向邊緣圖像進入競爭環(huán)節(jié),競爭的結(jié)果則為各個微動方向最優(yōu)的整體灰度邊緣圖像,最后進行二值化處理生成二值邊緣圖像。

  設原始圖像為f(x,y),則在某一微動方向上圖像的微動邊緣圖像由下式表示:

  g(x,y)={f(x,y)-f?茲(x+k1·?駐x,y+k2·?駐y)} (1)

  式中,?駐x、?駐y分別表示圖像向x、y方向移動的距離單元,k1、k2表示移動的大小,?茲表示移動的方向,計算公式為:

  ?茲=arctan(k2/k1) (2)

  以r


上一頁 1 2 3 下一頁

關(guān)鍵詞: 紅外 圖像 邊緣提取

評論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉