新聞中心

EEPW首頁 > 模擬技術 > 設計應用 > 利用熱電偶和ADC實現(xiàn)高精度溫度測量

利用熱電偶和ADC實現(xiàn)高精度溫度測量

作者: 時間:2012-03-22 來源:網(wǎng)絡 收藏
廣泛用于各種溫度檢測。設計的最新進展,以及新標準和算法的出現(xiàn),大大擴展了工作溫度范圍和精度。目前,溫度檢測可以在-270°C至+1750°C寬范圍內(nèi)達到±0.1°C的精度。為充分發(fā)揮新型能力,需要高分辨率熱電偶系統(tǒng)。能夠分辨極小電壓的低噪聲、24位、Σ-Δ模/數(shù)轉換器()非常適合這項任務。數(shù)據(jù)采集系統(tǒng)(DAS)采用24位評估(EV)板,熱電偶能夠在很寬的溫度范圍內(nèi)實現(xiàn)。熱電偶、鉑電阻溫度檢測器(PRTD)和相結合,可構成高性能系統(tǒng)。采用低成本、低功耗ADC的DAS系統(tǒng),可理想滿足便攜式檢測的應用需求。

熱電偶入門

托馬斯?塞貝克在1822年發(fā)現(xiàn)了熱電偶原理。熱電偶是一種簡單的溫度測量裝置,由兩種不同金屬(金屬1和金屬2)組成(圖1)。塞貝克發(fā)現(xiàn)不同的金屬將產(chǎn)生不同的、與溫度梯度有關的電勢。如果這些金屬焊接在一起構成溫度傳感器結(TJUNC,也稱為溫度結),另一端未連接的差分結(TCOLD,作為恒溫參考端)上將呈現(xiàn)出電壓,VOUT,該電壓與焊接結的溫度成正比。從而使熱電偶輸出隨溫度變化的電壓/電荷,無需任何電壓或電流激勵。

利用熱電偶和ADC實現(xiàn)高精度溫度測量
圖1. 熱電偶簡化電路

VOUT溫差(TJUNC- TCOLD)是金屬1及金屬2的金屬類型的函數(shù)。該函數(shù)在美國國家標準與技術研究院(NIST) ITS-90熱電偶數(shù)據(jù)庫[1]中嚴格定義,覆蓋了絕大多數(shù)實用金屬1和金屬2組合。利用該數(shù)據(jù)庫,可根據(jù)VOUT測量值計算相對溫度TJUNC。然而,由于熱電偶以差分方式測量TJUNC,為了確定溫度結的實測溫度,就必須知道冷端絕對溫度(單位為°C、°F或K)。所有現(xiàn)代熱電偶系統(tǒng)都利用另一絕對溫度傳感器(PRTD、硅傳感器等)精密測量冷端溫度,并進行數(shù)學補償。

圖1所示熱電偶簡化電路的溫度公式為:
Tabs = TJUNC+ TCOLD(式1)
式中:
Tabs為溫度結的絕對溫度;
TJUNC為溫度結與基準冷端的相對溫度;
TCOLD為冷端參考端的絕對溫度。

熱電偶的類型各種各樣,但是針對具體的工業(yè)或醫(yī)療環(huán)境可以選擇最適合的異金屬對兒。這些金屬和/或合金組合被NIST及國際電工委員會標準化,簡寫為E、J、T、K、N、B、S、R等。NIST和IEC為常見的熱電偶類型提供了熱電偶參考表[1]。

NIST和IEC還為每種熱電偶類型開發(fā)了標準數(shù)學模型。這些冪級數(shù)模型采用獨特的系數(shù)組合,每種熱電偶類型及不同溫度范圍的系數(shù)都不同[1]。

表1所示為部分常見熱電偶類型(J、K、E和S)的例子。

表1. 常見的熱電偶類型
Thermocouple TypePositive ConductorNegative ConductorTemperature Range (°C)Seebeck Coefficient at +20°C
JChromelConstantan0 to 76051μV/°C
KChromelAlumel-200 to +137041μV/°C
EChromelConstantan-100 to +100062μV/°C
SPlatinum (10% Rhodium)Rhodium0 to 17507μV/°C

J型熱電偶具有相對較高的塞貝克系數(shù)、和低成本,應用廣泛。這些熱電偶使用相對簡單的線性化算法,即可達到±0.1°C的測量精度。

K型熱電偶覆蓋的溫度范圍寬,在工業(yè)測量領域的應用非常廣泛。這些熱電偶具有適中的高塞貝克系數(shù)、低成本及良好的抗氧化性。K型熱電偶的精度高達±0.1°C。

E型熱電偶的應用沒有其它類型熱電偶普及。然而,這組熱電偶的塞貝克系數(shù)最高。E型熱電偶所需的測量分辨率低于其它類型。E型熱電偶的測量精度可達到±0.5°C,需要的線性化計算方法相對復雜。

S型熱電偶由鉑和銠組成,這對組合能夠在非常高的氧化環(huán)境下實現(xiàn)穩(wěn)定、可復現(xiàn)的測量。S型熱電偶的塞貝克系數(shù)較低,成本相對較高。S型熱電偶的測量精度可達到±1°C,需要的線性化算法相對復雜。
應用示例

熱電偶電路設計包括具有差分輸入及能夠分辨微小電壓的高分辨率ADC、穩(wěn)定的低漂移基準,以及準確測量冷端溫度的方法。

圖2所示為簡化原理圖。MX7705是一款16位、Σ-Δ ADC,內(nèi)置可編程增益放大器(PGA),無需外部精密放大器,能夠分辨來自熱電偶的微伏級電壓。冷端溫度利用MAX6627遠端二極管傳感器以及位于熱電偶連接器處、連接成二極管的晶體管測量。MX7705的輸入共模范圍擴展至低于地電勢30mV,可實現(xiàn)有限的負溫度范圍[2]。

利用熱電偶和ADC實現(xiàn)高精度溫度測量
圖2. 熱電偶測量電路。MX7705測量熱電偶輸出,MAX6627和外部晶體管測量冷端溫度,MAX6002為MX7705提供2.5V精密電壓基準。

也有針對具體應用設計的IC,用于熱電偶信號調(diào)理。這些IC集成本地溫度傳感器、精密放大器、ADC和電壓基準。例如,MAX31855為冷端補償熱電偶至數(shù)字轉換器,可數(shù)字化K、J、N、T或E型熱電偶信號。MAX31855以14位(0.25°C)分辨率測量熱電偶溫度(圖3)。

利用熱電偶和ADC實現(xiàn)高精度溫度測量
圖3. 集成冷端溫度補償?shù)腁DC,轉換熱電偶電壓時無需外部補償。

誤差分析

冷端補償

熱電偶為差分傳感器,利用溫度結和冷端之間的溫差產(chǎn)生輸出電壓。根據(jù)式1,只有精密測得冷端絕對溫度(TREF)時,才能得到溫度結的絕對溫度(Tabs)。

可利用新型鉑RTD (PRTD)測量冷端絕對溫度。它在很寬的溫度范圍內(nèi)提供良好的性能,尺寸小、功耗低,成本非常合理。

圖4所示為精密DAS的簡化原理圖,采用了MAX11200(24位、Σ-Δ ADC)評估(EV)板,可實現(xiàn)熱電偶溫度測量。本例中,利用R1 - PT1000 (PTS 1206,1000Ω)測量冷端絕對溫度。該解決方案能夠以±0.30°C或更測量冷端溫度[3]。

利用熱電偶和ADC實現(xiàn)高精度溫度測量
圖4. 熱電偶DAS簡化圖

如圖4所示,MAX11200的GPIO設置為控制精密多路復用器MAX4782,它選擇熱電偶或PRTD R1 - PT1000。該方法可利用單個ADC實現(xiàn)熱電偶或PRTD的動態(tài)測量。提高了系統(tǒng)精度,降低校準要求。

非線性誤差

熱電偶為電壓發(fā)生裝置。但是,大多數(shù)常見熱電偶[2,4]的輸出電壓作為溫度的函數(shù)呈現(xiàn)非常高的非線性。

圖4和圖5中說明,如果沒有經(jīng)過適當補償,常見的工業(yè)K型熱電偶的非線性誤差會超過數(shù)十攝氏度。

利用熱電偶和ADC實現(xiàn)高精度溫度測量
圖5. K型熱電偶的輸出電壓和溫度關系圖。曲線在-50°C至+350°C范圍內(nèi)線性度較好;在低于-50°C和高于+350°C時,相對于絕對線性度存在明顯偏差。[1]

利用熱電偶和ADC實現(xiàn)高精度溫度測量
圖6. 相對于直線逼近的偏差,假設線性輸出為從-50°C至+350°C,平均靈敏度為k = 41μV/°C。[1]

IEC采用的NIST ITS-90等現(xiàn)代熱電偶標準化處理、查找表和公式數(shù)據(jù)庫[1],是當前系統(tǒng)間互換熱電偶類型的基礎。通過這些標準,熱電偶很容易由相同或不同制造商的其它熱電偶所替代,而且經(jīng)過最少的系統(tǒng)設計更新或校準即可確保性能指標。

NIST ITS-90熱電偶數(shù)據(jù)庫提供了詳細的查找表。通過使用標準化多項式系數(shù)[1],還可利用多項式在非常寬的溫度范圍內(nèi)將熱電偶電壓換算成溫度(°C)。

根據(jù)NIST ITS-90熱電偶數(shù)據(jù)庫,多項式系數(shù)為:

T = d0+ d1E + d2E2 + ... dNEN(式2)

式中:
T為溫度,單位為°C;
E為VOUT,熱電偶輸出,單位為mV;
dN為多項式系數(shù),每一熱電偶的系數(shù)是唯一的;
N = 多項式的最大階數(shù)。

表2所示為一個K型熱電偶的NIST (NBS)多項式系數(shù)。

表2. K型熱電偶系數(shù)


上一頁 1 2 3 下一頁

評論


相關推薦

技術專區(qū)

        Type-K Thermocouple Coefficients
        Temperature Range (°C)-200 to 00 to 500500 to 1372
        Voltage Range (mV)-5.891 to 00 to 20.64420.644 to 54.886