利用熱電偶和ADC實(shí)現(xiàn)高精度溫度測量
利用表2中的多項(xiàng)式系數(shù),能夠在-200°C至+1372°C溫度范圍內(nèi)以優(yōu)于±0.1°C的精度計(jì)算溫度T。大多數(shù)常見熱電偶都有不同系數(shù)表可用[1]。
同樣,在-200°C至0、0至+500°C和+500°C至+1372°C溫度范圍也可以找到類似的NIST ITS-90系統(tǒng),能夠以更高精度(低于±0.1°C,相對(duì)于±0.7°C)計(jì)算溫度。與原來的“單”間隔表進(jìn)行比較即可看出這點(diǎn)[2]。
ADC規(guī)格參數(shù)/分析
表3所示為MAX11200的基本性能指標(biāo),具有圖4中所示的電路特性。
表3. MAX11200的主要技術(shù)指標(biāo)
MAX11200 | Comments | |
Sample Rate (sps) | 10 to 120 | The MAX11200's variable oversampling rate can be optimized for low noise and for -150dB line-noise rejection at 50Hz or 60Hz. |
Channels | 1 | GPIOs allow externalmultiplexercontrol for multichannel measurements. |
INL (ppm, max) | ±10 | Provides very good measurement linearity. |
Offset Error (μV) | ±1 | Provides almost zero offset measurements. |
Noise-Free Resolution (Bits) | 19.0 at 120sps; 19.5 at 60sps; 21.0 at 10sps | Very highdynamic rangewith low power. |
VDD(V) | AVDD (2.7 to 3.6) DVDD (1.7 to 3.6) | AVDD and DVDD ranges cover the industry's popular power-supply ranges. |
ICC(μA, max) | 300 | Highest resolution per unit power in the industry; ideal for portable applications. |
GPIOs | Yes | Allows external device control, including local multiplexer control. |
Input Range | 0 to VREF, ±VREF | Wide input ranges |
Package | 16-QSOP, 10-μMAX? (15mm2) | Some models like theMAX11202are offered in a 10-μMAX package—a very small size for space-constrained designs. |
本文中使用的MAX11200是一款低功耗、24位、Σ-Δ ADC,適合于需要寬動(dòng)態(tài)范圍、高分辨率的低功耗應(yīng)用。利用該ADC,基于式3和4可計(jì)算圖3電路的溫度分辨率。
(式3) (式4)
式中:
Rtlsb為熱電偶在1 LSB時(shí)的分辨率;
Rtnfr為熱電偶無噪聲分辨率(NFR);
VREF為基準(zhǔn)電壓;
Tcmax為測量范圍內(nèi)的熱電偶最大溫度;
Tcmin為測量范圍內(nèi)的熱電偶最小溫度;
Vtmax為測量范圍的熱電偶最大電壓;
Tcmax為測量范圍內(nèi)的熱電偶最小電壓;
FS為ADC滿幅編碼,對(duì)于雙極性配置的MAX11200為(223-1);
NFR為ADC無噪聲分辨率,對(duì)于雙極性配置的MAX11200為(220-1),10Sa/s時(shí)。
表4所列為利用式3和4計(jì)算表1中K型熱電偶的測量分辨率。
表4. K型熱電偶在不同溫度范圍內(nèi)的測量分辨率
Temperature Range (°C) | -200 to 0 | 0 to 500 | 500 to 1372 |
Voltage Range (mV) | -5.891 | 20.644 | 34.242 |
Rtlsb Resolution (°C/LSB) | 0.0121 | 0.0087 | 0.0091 |
Rtnfr Resolution (°C/NFR) | 0.0971 | 0.0693 | 0.0729 |
表4中提供了每個(gè)溫度范圍內(nèi)的°C/LSB誤差和°C/NFR誤差計(jì)算值。無噪聲分辨率(NFR)表示ADC能夠可靠區(qū)分的最小溫度值。對(duì)于整個(gè)溫度范圍,NFR值低于0.1°C,對(duì)于工業(yè)和醫(yī)療應(yīng)用中的大多數(shù)熱電偶遠(yuǎn)遠(yuǎn)足夠。
熱電偶與MAX11200評(píng)估板的連接
MAX11200EVKIT提供了全功能、高分辨率DAS。評(píng)估板可幫助設(shè)計(jì)工程師快速完成項(xiàng)目開發(fā),例如驗(yàn)證圖4所示解決方案。
在圖4所示原理圖中,常見的K型OMEGA熱電偶(KTSS-116 [5])連接至差分評(píng)估板輸入A1。利用Maxim應(yīng)用筆記4875中介紹的高性價(jià)比比例方案,測量冷端溫度的絕對(duì)值[3]。R1 (PT1000)輸出連接至評(píng)估板輸入A0。MAX11200的GPIO控制精密多路復(fù)用器MAX4782,復(fù)用器動(dòng)態(tài)選擇將熱電偶或PRTD R1輸出連接至MAX11200的輸入。
K型熱電偶(圖3、4)在-50°C至+350°C范圍內(nèi)的線性度適當(dāng)。對(duì)于有些不太嚴(yán)格的應(yīng)用,線性逼近公式(式5)能大大降低計(jì)算量和復(fù)雜度。
近似絕對(duì)溫度可計(jì)算為:
(式5)
式中:
E為實(shí)測熱電偶輸出,單位為mV;
Tabs為K型熱電偶的絕對(duì)溫度,單位為°C;
Tcj為PT1000實(shí)測的熱電偶冷端溫度,單位為°C [3];
Ecj為利用Tcj計(jì)算得到的冷端熱電偶等效輸出,單位為mV。
所以:
k = 0.041mV/°C——從-50°C至+350°C范圍內(nèi)的平均靈敏度
然而,為了在更寬的溫度范圍(-270°C至+1372°C)內(nèi)精密測量,強(qiáng)烈建議采用多項(xiàng)式(式2)和系數(shù)(根據(jù)NIST ITS-90):
Tabs = ?(E + Ecj) (式6)
式中:
Tabs為K型熱電偶的絕對(duì)溫度,單位為°C;
E為實(shí)測熱電偶輸出,單位為mV;
Ecj為利用Tcj計(jì)算得到的冷端熱電偶等效輸出,單位為mV;
f為式2中的多項(xiàng)式函數(shù);
TCOLD為PT1000實(shí)測的熱電偶的冷端溫度,單位為°C。
圖7所示為圖4的開發(fā)系統(tǒng)。該系統(tǒng)包括經(jīng)認(rèn)證的精密校準(zhǔn)器,F(xiàn)luke?-724,作為溫度模擬器代替K型OMEGA熱電偶。
詳細(xì)圖片(PDF, 3.1MB)
圖7. 圖4開發(fā)系統(tǒng)
Fluke-724校準(zhǔn)器提供與K型熱電偶在-200°C至+1300°C范圍內(nèi)輸出相對(duì)應(yīng)的精密電壓,送至基于PT1000的冷端補(bǔ)償模塊?;贛AX11200的DAS動(dòng)態(tài)選擇熱電偶或PRTD測量值,并通過USB端口將數(shù)據(jù)送至筆記本計(jì)算機(jī)。專門開發(fā)的DAS軟件采集并處理熱電偶和PT1000輸出產(chǎn)生的數(shù)據(jù)。
表5列出了-200°C至+1300°C溫度范圍內(nèi)的測量和計(jì)算值,采用式5和6。
表5. -200°C至+1300°C范圍的測量計(jì)算
Temperature (Fluke-724) (°C) | PT1000 Code Measured at "Cold Junction" (LSB) | Thermocouple Code Adjusted to 0°C by PT1000 Measurements (LSB) | Temperature Calculated by Equation 6 and Table 2 (°C) | Temperature Error vs. Calibrator (°C) | Temperature Calculated by "Linear" Equation 5 (°C) |
-200 | 326576 | -16463 | -199.72 | 0.28 | -143.60 |
-100 | 326604 | -9930 | -99.92 | 0.08 | -86.62 |
-50 | 326570 | -5274 | -50.28 | -0.28 | -46.01 |
0 | 326553 | 6 | 0.00 | 0.00 | 0.05 |
20 | 326590 | 2257 | 20.19 | 0.19 | 19.68 |
100 | 326583 | 11460 | 100.02 | 0.02 | 99.96 |
200 | 326486 | 22779 | 200.18 | 0.18 | 198.69 |
500 | 326414 | 57747 | 500.16 | 0.16 | 503.70 |
1000 | 326520 | 115438 | 1000.18 | 0.18 | 1006.92 |
1300 | 326544 | 146562 | 1300.09 | 0.09 | 1278.40 |
如表5所示,利用式6,基于MAX11200的DAS系統(tǒng)在非常寬的溫度范圍內(nèi)可達(dá)到±0.3°C數(shù)量級(jí)的精度。式5中的線性逼近法在很窄的-50°C至+350°C范圍內(nèi)僅能實(shí)現(xiàn)1°C至4°C的精度。
注意,式6需要相對(duì)復(fù)雜的線性化計(jì)算算法。
大約十年之前,在DAS系統(tǒng)設(shè)計(jì)中實(shí)現(xiàn)此類算法會(huì)受到技術(shù)和成本的限制。當(dāng)今的現(xiàn)代化處理器速度快、性價(jià)比高,解決了這些難題。
評(píng)論