低電壓音頻功率放大器TPA711的特性及其應(yīng)用
一、簡(jiǎn)介:
TPA711集成電路是TI專為內(nèi)置揚(yáng)聲器,外接耳機(jī),為低電壓場(chǎng)合應(yīng)用而開發(fā)的橋式(BTL)或單端(SE)音頻功率放大器。在3.3V工作電壓下,它可在音頻范圍內(nèi),BTL (8Ω負(fù)載)工作模式下,輸出總諧波失真與噪聲值小于0.6%,250mW的連續(xù)功率。盡管TPA711具有20kHz以上的工作特性,但其在更窄頻段的應(yīng)用場(chǎng)合,如無線通信場(chǎng)合,效果最佳。BTL電路在大多數(shù)應(yīng)用場(chǎng)合,輸出端可以省掉耦合電容器,這點(diǎn)對(duì)小型電池的供電設(shè)備特別重要。當(dāng)需要驅(qū)動(dòng)耳機(jī)時(shí),TPA711不尋常的特點(diǎn)是可使放大器快速實(shí)現(xiàn)從BTL到SE模式切換。這樣,省掉了使用機(jī)械開關(guān)或附屬連接裝置。對(duì)功率敏感的應(yīng)用場(chǎng)合,TPA711可以在關(guān)斷模式下工作,借助于專用消噪聲電路消除揚(yáng)聲器的噪聲。TPA711有8腳SOIC和MSOP兩種表面安裝的封裝形式,它們可以減少50%的電路板面積和40%的高度。圖1、圖2分別表示其外形圖和內(nèi)部工作框圖。表1表示其引腳功能。
二、工作特性和外形圖
1. 工作電壓范圍3.3V~5V;
2. 額定工作電壓范圍2.5V~5.5V;
3. 輸出功率;
① 700mV,當(dāng)VDD=5V,BTL,RL=8Ω
② 85mV,當(dāng)VDD=5V,BE,RL=32Ω
③ 250mV,當(dāng)VDD=3.3V,BTL,RL=8Ω
④ 37mV,當(dāng)VDD=3.3V,SE,RL=32Ω
4. 關(guān)斷控制
① IDD=7μA,當(dāng)3.3V;
② IDD=50μA,當(dāng)5V;
5.BTL/SE轉(zhuǎn)換控制;
6.熱保護(hù)和短路保護(hù);
7.集成消噪聲電器;
8.表面安裝封裝;
① SOIC
② PowerPADTMMSOp
外形如圖1所示。
圖1 D或DGN封裝頂視圖
D-小外形塑封(SOIC)
DGN-有導(dǎo)熱焊盤的小外形塑封(MSOP)
三、工作框圖及引腳功能:
圖2示出的是工作框圖,表1列出了引腳功能。
圖2 工 作 框 圖
表1 引 腳 功 能
引 腳 | 輸入/輸出 | 功 能 | |
名 稱 | 引腳號(hào) | ||
旁 路 | 2 | 輸入 | 當(dāng)用作音頻放大時(shí),這個(gè)端子應(yīng)加一個(gè)0.1μF-2.2μf的電容 |
地 | 7 | 輸入 | 接地 |
音頻輸入 | 4 | 輸入 | 音頻信號(hào)輸入 |
SE/BTL轉(zhuǎn)換 | 3 | 輸入 | 當(dāng)SE/BTL為低時(shí),TPA711工作于BTL模式,反之,SE模式 |
關(guān) 斷 | 1 | 輸入 | 這個(gè)端子為高時(shí),(IDD=7μA)器件關(guān)斷 |
電 源 | 6 | 輸入 | 電源電壓端 |
V0+ | 5 | 輸出 | SE/BTL的輸出正端 |
V0- | 8 | 輸出 | SE/BTL的輸出負(fù)端 |
四、參數(shù)測(cè)試電路:
圖3、4分別表示BTL、SE模式測(cè)試電路圖,用以測(cè)量電路的參數(shù)。
圖3 BTL模式測(cè)試電路
圖4 SE模式測(cè)試電路
五、典型應(yīng)用
1. 橋式輸出與單端輸出(BTL/SE)模式:
圖5給出了工作于BTL模式下的音頻功放電路圖。TPA711內(nèi)有兩個(gè)線性功放來驅(qū)動(dòng)負(fù)載。它們工作于差動(dòng)方式。這樣相對(duì)于參考地電位,它的輸出功率較大。
圖5 橋式電路圖
輸出功率可由下式計(jì)算:
(1)
在便攜式音頻設(shè)備中,電路供電電壓為3.3V。在8Ω負(fù)載單端輸出62.5mW的情況下,橋式可輸出4×62.5=250mW。即有6dB的功增加。在增加功率輸出的同時(shí),對(duì)頻率響應(yīng)也應(yīng)加以注意。
在圖6 所示的SE(單端)輸出情況下,接至負(fù)載的隔直耦合電容Cc是必不可少的,該電容器的容量比較大(3.3μF~1000μF),重量也較大,占印刷電路板的面積大,價(jià)格較貴。這個(gè)電容對(duì)系統(tǒng)的低頻響應(yīng)影響很大。這是由于這個(gè)電容和負(fù)載間形成的高通濾波而造成的。角頻率可由下式計(jì)算:
(2)
圖6 單端電路和頻率響應(yīng)圖
例如,在8Ω負(fù)載,輸出耦合電容為68μF時(shí),將對(duì)293Hz以下的頻率加以衰減。而在BTL模式下,抵消了直流失調(diào)電壓,省掉了輸出輸出耦合電容,低頻特性只取決于輸出回路和揚(yáng)聲器特性。同時(shí)電路體積和造價(jià)也相應(yīng)降低。
2. BTL放大器效率:
線性放大器的效率低,這主要是因于輸出功率管上的管壓降。首先是功率輸出管上的直流壓降和輸出功率成反比,其次是由于正弦波本身的原因。管壓降可由VDD減去輸出電壓的RMS(均方根值)值得到,管壓降乘以電源電流的RMS,即可算出管耗。
雖然流過BTL,SE功率負(fù)載的電壓,電流都是正弦波,但是電源電流的波形是很不相同的。在SE模式下的電流波形是半波,而在BTL模式下是全波,這就意味著它們的波形因數(shù)(因子)不同,參見圖7。利用下面的公式可以計(jì)算放大器的效率:
(3)
式中:
圖7 BTL放大器的電壓、電流波形
(4)
表2給出了輸出功率不同條件下計(jì)算得到的效率。當(dāng)輸出功率低時(shí),電路效率也低,隨著輸出功率的增加,電路的功率也增加。在正常工作范圍內(nèi),內(nèi)部功耗幾乎為恒定值。從方程(4)可以看出,電源電壓VDD下降,電路效率增加。
表2 3.3V 8Ω BTL模制中效率與輸出功率的關(guān)系
輸出功率(W) | 效率(%) | 峰值到峰值的電壓 | 內(nèi)部功耗 |
0.125 | 33.6 | 1.41 | 0.26 |
0.25 | 47.6 | 2.00 | 0.29 |
0.375 | 58.3 | 2.45 | 0.28 |
*高的峰值電壓值引起總諧波失真增大。
3.典型應(yīng)用電路
圖8是一個(gè)典型便攜式音頻放大電路,電路電壓增益為-10。
圖8 TPA711應(yīng)用電路
下面討論圖8中電路元器件的選用。
4.元件選用:
增益設(shè)定電阻RF,R1。
在BTL工作模式下,TPA711的增益由RF,R1由公式5決定:(5)
公式(5)中系數(shù)-2是由于BTL電路在輸出端橋式電路輸出對(duì)稱波形幅度較SE大一倍的原因。假定TPA711是一個(gè)MOS放大器。輸入阻抗很高,那么輸入電流就很小,電路噪聲隨RF的增加而增加。同時(shí),RF的取值應(yīng)有一個(gè)范圍,以確保電路正常工作。假定放大器的反相輸出端等效阻抗為5~20kΩ,則電路等效阻抗可由等式(6)決定。
(6)
舉例,假定R1=10 kΩ,RF=50 kΩ,則在BTL模式下電路電壓效益為-10,反相端輸入等效阻抗為8.3 kΩ,這個(gè)取值在推薦范圍內(nèi)。
對(duì)于高性能應(yīng)用場(chǎng)合,R1,RF選用金屬膜電阻,這樣可降低電路噪聲。當(dāng)RF大于50 kΩ時(shí),由于RF和MOS輸入回路容抗的作用,會(huì)使電路工作不穩(wěn)定。這時(shí)可在RF兩端并一個(gè)5pF的電容。這樣RF,CF可形成一個(gè)低通濾波回路,回路的截止效率可由等式(7)決定。
(7)
例如,當(dāng)RF=100 kΩ,CF=5pF時(shí),fco=318kHz,這足以超過音頻范圍。
5.輸入電容C1:
在實(shí)際應(yīng)用中,C1可使TPA711的偏置電壓穩(wěn)定,這對(duì)確保電路穩(wěn)定工作很重要。在本例中,C1,R1形成一個(gè)高通濾波回路,其角頻率由方程(8)決定。
(8)
電容C1的取值對(duì)穩(wěn)定電路偏置電壓影響較大。當(dāng)R1=10 kΩ時(shí),為得到低至40Hz的平坦響應(yīng)特性,可由等式(9)決定C1取值。
(9)
在本例中,C1為0.40μF,實(shí)際應(yīng)用中C1取值范圍為0.40μF~1μF。C1取值還要考慮的影響是通過R1,RF的漏電流,這個(gè)漏電流會(huì)在電路輸出端產(chǎn)生一個(gè)失調(diào)電壓,從而影響輸出功率,這點(diǎn)在高增益場(chǎng)合下的影響更明顯,所以實(shí)用中C1應(yīng)選用鉭電容或瓷片電容。當(dāng)使用有極性電容時(shí),正極應(yīng)接在電路的輸入端,這是因?yàn)檩斎攵说闹绷麟娢粸閂DD/2的原因,它比信號(hào)源的直流電壓要高,電容的極性要正確,這點(diǎn)在使用中很重要。
6.電源去耦電容CS:
TPA711是一個(gè)高性能的CMOS音頻放大器,為了使電路的總諧波失真盡可能低,則要求電源的去耦要好。電源的去耦還可以消除由于電路的揚(yáng)聲器引線過長(zhǎng)而引入的振蕩。比較好的去耦是采用不同類型的兩個(gè)電容并聯(lián),小容量,低等效串聯(lián)電阻(ESR)的小容量電容用來吸收高頻噪聲干擾,如電火花,在引線上數(shù)字雜亂干擾躁聲等。而對(duì)濾除低頻噪聲信號(hào),應(yīng)選用鋁電解電容器,容量應(yīng)大于10μF。
7.中路旁通電容CB:
電容CB有幾個(gè)作用:
1) 在電路啟動(dòng)或由關(guān)斷模式的再啟動(dòng)情況下,CB決定電路的啟動(dòng)速率;
2) 可降低因輸出驅(qū)動(dòng)信號(hào)耦合引起電源產(chǎn)生的噪聲信號(hào);
3) 可減少電路啟動(dòng)的撲撲聲。為使電路啟動(dòng)撲撲聲盡量小,CB可由方程(10)決定:
(10)
作為一個(gè)例子,取CB=2.2μF,C1=0.47μF,CF=50 kΩ,R1=10 kΩ,將這些值人入方程(10)得出:
可見滿足方程(10)。為使電路總諧波失真小,CB應(yīng)該用等效串聯(lián)電阻ESR小的瓷片電容或鉭電容。
8.單端工作狀態(tài)
在單端(SE)工作狀態(tài)下(見圖9),負(fù)載由VO+驅(qū)載。在單端模式下,增益由等式(11)的RF,R1決定。
(11)
在SE模式下,輸出耦合電容的選擇也很重要,CC對(duì)電路其它元件的取值也有影響。它應(yīng)滿足以下公式(12)。
(12)
9.輸出耦合電容CC:
在典型的單電源單端(SE)情況下,CC用來在電路輸出端與負(fù)載間隔直,電路的高通頻率由等式(13)決定。
(13)
電容CC的缺點(diǎn)是影響電路頻響的下限值,從而影響電路的低頻響應(yīng)。為使下限頻率足夠低,CC取值應(yīng)足夠大。一般對(duì)4Ω,8Ω,32Ω,47Ω的負(fù)載,CC應(yīng)選用330μF以上。表3給出了不同的取值情況下,電路的頻響特性。
表3 單端輸入時(shí)負(fù)載阻抗與電路低頻特性間的關(guān)系
RL | CC | 最低頻率響應(yīng) |
8 | 330μF | 60Hz |
32 | 330μF | 15Hz |
47000Ω | 330μF | 0.01Hz |
如表3所示,8Ω負(fù)載比較合適,耳機(jī)頻響特性也很好。
10.SE/BTL工作模式:
PA711可以很方便地在SE和BTL工作模式下實(shí)現(xiàn)轉(zhuǎn)換,這是它最重要的特性,這對(duì)電路負(fù)載既有揚(yáng)聲器又有耳機(jī)的場(chǎng)合下特別有用。當(dāng)控制端SE/BTL為L(zhǎng)時(shí),電路工作于BTL模式,當(dāng)SE/BTL為H時(shí),電路工作于SE模式。SE/BTL的控制輸入可以是一個(gè)TTL邏輯電源,更常用的是采用圖9所示的電阻分壓網(wǎng)絡(luò)。
圖9 TPA711電阻分壓網(wǎng)絡(luò)電路
當(dāng)耳機(jī)未插入時(shí),耳機(jī)開關(guān)閉合,由100 kΩ電阻分壓網(wǎng)絡(luò)提供一個(gè)低電平SE/BTL端子,當(dāng)耳機(jī)插入時(shí),電阻1 kΩ切斷,分壓網(wǎng)絡(luò)為SE/BTL端子提供一個(gè)高電平,從而完成SE/BTL工作模式轉(zhuǎn)換。
11.采用低等效串聯(lián)電阻電容:
本電路所有電容都應(yīng)采用低等效串聯(lián)電阻的電容,這對(duì)提高電路性能很有意義。
12.5V和3.3V工作:
TPA711可以在3.3V~5V范圍內(nèi)正常工作。提供電壓不同,輸出功率不同。每個(gè)TPA711的動(dòng)態(tài)范圍為(VDD-1)伏,而對(duì)3.3V工作電壓下,當(dāng)VO(PP)=2.3V時(shí),電路出現(xiàn)限幅,對(duì)5V供電,VO(PP)=4V時(shí),電路出現(xiàn)限幅。
13.動(dòng)態(tài)范圍和熱設(shè)計(jì):
在正常工作狀態(tài)下,線性放大器會(huì)產(chǎn)生很大的功耗,對(duì)典型的CD需要12dB~15dB的動(dòng)態(tài)范圍。對(duì)TPA711在5V供電電壓,負(fù)載為8Ω的情況下,它可以輸出700mW的峰值功率?,F(xiàn)將功率值轉(zhuǎn)變?yōu)閐B值。有:PdB=101gPw=101g700mW=-1.5dB
可得到無失真條件下的電路動(dòng)態(tài)范圍
-1.5dB-15dB=-16.5(15dB的動(dòng)態(tài)范圍)
-1.5dB-12dB=-13.5(12dB的動(dòng)態(tài)范圍)
-1.5dB-9dB=-10.5(9dB的動(dòng)態(tài)范圍)
-1.5dB-6dB=-7.5(6dB的動(dòng)態(tài)范圍)
-1.5dB-3dB=-4.5(3dB的動(dòng)態(tài)范圍)
再次將分貝值轉(zhuǎn)換為功率值:
Pw=10PDB/10
=22mW(15dB動(dòng)態(tài)范圍)
=44mW(12dB動(dòng)態(tài)范圍)
=88mW(9dB動(dòng)態(tài)范圍)
=175mW(6dB動(dòng)態(tài)范圍)
=350mW(3dB動(dòng)態(tài)范圍)
表4給出了TPA711在額定功率5V,8Ω,BTL模式下的峰值輸出功率,平均輸出功率,功耗,最高環(huán)境溫度間的關(guān)系。
表4表明,TPA711可以在DGN封裝條件下不使用散熱片,在環(huán)境溫度高達(dá)110℃時(shí)輸出700Mw。D封裝下環(huán)境溫度34℃,不使用散熱片,輸出功率700Mw。
峰值輸出功率(mW) | 平均輸出功率 | 功耗(mW) | D封裝(SOIC) | DGW封裝(MSOP) |
最高環(huán)境溫度 | 最高環(huán)境溫度 | |||
700 | 700Mw | 675 | 34℃ | 110℃ |
700 | 350mW(3Db) | 595 | 47℃ | 115℃ |
700 | 176mW(6dB) | 475 | 68℃ | 122℃ |
700 | 88mW(9dB) | 350 | 89℃ | 125℃ |
700 | 44mW(12dB) | 225 | 111℃ | 125℃ |
評(píng)論