LED散熱基板之厚膜與薄膜工藝差異分析
1、簡介
LED模組現(xiàn)今大量使用在電子相關產(chǎn)品上,隨著應用范圍擴大以及照明系統(tǒng)的不斷提升,約從1990年開始高功率化的要求急速上升,尤其是以白光高功率型式的需求最大,現(xiàn)在的照明系統(tǒng)上所使用之LED功率已經(jīng)不只1W、3W、5W甚至到達10W以上,所以散熱基板的散熱效能儼然成為最重要的議題。影響LED散熱的主要因素包含了LED芯片、芯片載板、芯片封裝及模組的材質與設計,而LED及其封裝的材料所累積的熱能多半都是以傳導方式散出,所以LED芯片、基板及LED芯片封裝的設計及材質就成為了主要的關鍵。
2、散熱基板對于LED模組的影響
LED從1970年以后開始出現(xiàn)紅光的LED,之后很快的演進到了藍光及綠光,初期的運用多半是在一些標示上,如家電用品上的指示,到了2000年開始,白光高功率LED的出現(xiàn),讓LED的運用開始進入另一階段,像是戶外大型看版、小型顯示器的背光源等 ,但隨著高功率的快速演進,預計從2010年之后,車用照明、室內(nèi)及特殊照明的需求量日增,但是這些高功率的照明設備,其散熱效能的要求也越益嚴苛,因陶瓷基板具有較高的散熱能力與較高的耐熱、氣密性,因此,陶瓷基板為目前高功率LED最常使用的基板材料之一。
然而,目前市面上較常見的陶瓷基板多為LTCC或厚膜技術制成的陶瓷散熱基板,此類型產(chǎn)品受網(wǎng)版印刷技術的準備瓶頸,使得其對位精準度上無法配合更高階的焊接,共晶(Eutectic)或覆晶(Flip chip) 封裝方式,而利用薄膜工藝技術所開發(fā)的陶瓷散熱基板則提供了高對位精準度的產(chǎn)品,以因應封裝技術的發(fā)展。
2.1、散熱基板的選擇
就LED芯片承載基板的發(fā)展上,以承載芯片而言,傳統(tǒng)PCB的基板材質具有高度商業(yè)化的特色,在LED發(fā)展初期有著相當?shù)挠绊懥?。然而,隨著LED功率的提升,LED基板的散熱能力,便成為其重要的材料特性之一,為此,陶瓷基板逐漸成為高效能LED的主要散熱基板材料(如表一所示),并逐漸被市場接受進而廣泛使用。近年來,除了陶瓷基板本身的材料特性問題須考慮之外,對基板上金屬線路之線寬、線徑、金屬表面平整度與附著力之要求日增,使得以傳統(tǒng)厚膜工藝備制的陶瓷基板逐漸不敷使用,因而發(fā)展出了薄膜型陶瓷散熱基板,本文將針對陶瓷散熱基板在厚膜與薄膜工藝及其產(chǎn)品特性上的差異做出分析。
3、陶瓷散熱基板
從傳統(tǒng)的PCB(FR4)板,到現(xiàn)在的陶瓷基板,LED不斷往更高功率的需求發(fā)展, 現(xiàn)階段陶瓷基板之金屬線路多以厚膜技術成型,然而厚膜印刷的對位精準度使得其無法跟上LED封裝技術之進步,其主要因素為在更高功率LED元件的散熱設計中,使用了共晶以及覆晶兩種封裝技術,這些技術的導入不但可以使用高發(fā)光效率的LED芯片,更可以大幅降低其熱阻值并且讓接合度更加完善,讓整體運作的功率都相對的提昇。但是這兩種接合方式的應用都需要擁有精確金屬線路設計的基礎,因此以曝光微影為對位方式的薄膜型陶瓷散熱基板就變成為精準線路設計主流。
3.1、厚膜印刷陶瓷基版
厚膜工藝大多使用網(wǎng)版印刷方式形成線路與圖形,因此,其線路圖形的完整度與線路對位的精確度往往隨著印刷次數(shù)增加與網(wǎng)版張力變化而出現(xiàn)明顯的累進差異,此結果將影響后續(xù)封裝工藝上對位的精準度;再者,隨著元件尺寸不斷縮小,網(wǎng)版印刷的圖形尺寸與解析度亦有其限制,隨著尺寸縮小,網(wǎng)版印刷所呈現(xiàn)之各單元圖形尺寸差異(均勻性)與金屬厚度差異亦將越發(fā)明顯。為了線路尺寸能夠不斷縮小與精準度的嚴格要求下,LED散熱基板的生產(chǎn)技術勢必要繼續(xù)提升。因而薄膜工藝的導入就成為了改善方法之一,然而國內(nèi)擁有成熟的陶瓷基板薄膜金屬化工藝技術的廠家卻屈指可數(shù)。為此,以薄膜元件起家的璦司柏電子(ICP),即針對自家開發(fā)之薄膜基板與傳統(tǒng)厚膜基板進行其工藝與產(chǎn)品特性差異分析(如下表二所示)。
3.2、薄膜工藝應用于陶瓷基板
薄膜技術的導入正可解決上述線路尺寸縮小的工藝瓶頸,結合高真空鍍膜技術與黃光微影技術,能將線路圖形尺寸大幅縮小,并且可同時符合精準的線路對位要求,其各單元的圖形尺寸的低差異性(高均勻性)更是傳統(tǒng)網(wǎng)版印刷所不易達到的結果。在高熱導的要求下,目前璦司柏(ICP)的薄膜工藝技術已能克服現(xiàn)階段厚膜工藝在對位精準度的瓶頸,圖(二)即為薄膜工藝之簡易流程圖,在空白陶瓷基板上(氧化鋁/氮化鋁)經(jīng)過前處理之后,鍍上種子層(sputtering),經(jīng)過光阻披覆、曝光顯影,再將所需之線路增厚(電鍍/化學鍍),最后經(jīng)過去膜、蝕刻步驟使線路成形,此工藝所備制之產(chǎn)品具有較高的線路精確度與較佳的金屬鍍層表面平整度。圖(三)即為璦司柏薄膜基板產(chǎn)品與傳統(tǒng)厚膜產(chǎn)品的金屬線路光學顯微圖像??擅黠@看出厚膜印刷之線路,其表面具有明顯的坑洞且線條的平整度不佳,反觀以薄膜工藝制備之金屬線路,不但色澤清晰且線條筆直平整。
由以上厚/薄膜這些金屬線路上的幾何精準度差異,再加上厚膜線路易因網(wǎng)版張網(wǎng)問題造成陣列圖形的累進公差加劇,使得厚膜印刷產(chǎn)品在后續(xù)芯片置件上,較容易造成置件偏移或是尋邊異常等困擾。換句話說厚膜印刷產(chǎn)品的對位及線路的精準度不夠精確,使其限制了芯片封裝工藝的工藝裕度(window)。然而,薄膜工藝產(chǎn)品則能大幅改善其現(xiàn)象。
但從產(chǎn)品成本結構來看,如表二所示薄膜產(chǎn)品的工藝設備(黃光微影)與生產(chǎn)環(huán)境(無塵或潔凈室)相較于厚膜產(chǎn)品其成本較高,然而薄膜工藝的金屬線路多以厚銅材料為主,相較于厚膜印刷之厚銀而言,材料成本卻相對較低,因此,可預期的當利用薄膜工藝將陶瓷基板金屬化的產(chǎn)品,日漸達到經(jīng)濟規(guī)模時,其成本將逐漸趨近于厚膜產(chǎn)品。
3.2.1、氧化鋁陶瓷基板
上述部分是針對工藝不同部份所做的闡述,另一項與散熱息息相關的則是基板材質,LED散熱基板所使用之材質現(xiàn)階段以陶瓷為主,而氧化鋁陶瓷基板應是較易取得且成本較低之材料,是目前運用在元件上的主要材料,然而厚膜技術或薄膜技術在氧化鋁陶瓷基板上制備金屬線路,其金屬線路與基版的接著度或是特性上并無顯著的差異,而兩種工藝顯現(xiàn)出最主要的差異則是在線路尺寸縮小的要求下,薄膜工藝能提供厚膜技術無法達到的較小線路尺寸與較高的圖形精準度。
3.2.2、氮化鋁陶瓷基板
而在更高功率LED應用的前提下,具高導熱係數(shù)的氮化鋁(170-230W/mK)將是散熱基板的首選材質,但厚膜印刷之金屬層(如高溫銀膠)多需經(jīng)過高溫(高于800oC)燒結工藝,此高溫燒結工藝于大氣環(huán)境下執(zhí)行易導致金屬線路與氮化鋁基板間產(chǎn)生氧化層,進而影響線路與基板之間的附著性;然而,薄膜工藝則在300℃以下工藝之條件下備制,無氧化物生成與附著性不佳
評論