針對GPON突發(fā)模式接收器的低功耗FPGA方案
理想的BMR
如前所述,為了處理上行通路的動態(tài)性質(zhì),BMR必須滿足一組特定的要求。理想的BMR應有非??斓逆i定時間,支持高速串行數(shù)據(jù)速率,同時又保持最小的尺寸和最小的功耗。傳統(tǒng)的BMR已提供了針對GPON的數(shù)據(jù)速率,但在成本、功耗和電路板的面積方面做了一些折衷。另外一方面,過去FPGA提供靈活性和很高的集成度,但這些FPGA的SERDES不能滿足GPON所要求的鎖定時間和數(shù)據(jù)速率的要求。理想的解決方案取決于BMR和FPGA?,F(xiàn)在的解決方案是目前FPGA的I/O能力。這些編程平臺的獨特功能是在每個引腳上端接上行PON通路,與傳統(tǒng)的BMR器件相比較,提供了節(jié)省成本和可升級的解決方案。目前使用的最普通的方法是用FPGA采樣輸入數(shù)據(jù)。
這個方法所關(guān)注的是性能和功耗。FPGA對PON終端提供了另外一種方法,這種FPGA是LatticeSC系列。這些器件通過合并每個I/O內(nèi)的特殊邏輯來應對BMR的挑戰(zhàn),可動態(tài)地適應不同的線而無需使用FPGA邏輯。
如圖2所示,嵌入在每個I/O中的是輸入延時塊(INDEL)和自適應輸入邏輯(AIL),動態(tài)地補償時序相位變化,使每個引腳的速度達2Gbps。終端的結(jié)果是完整的I/O系統(tǒng),支持快速鎖定時間和傳統(tǒng)BMR的性能,但具有很高的集成度,而且是低功耗的編程平臺。
如何進行AIL相位修正
傳統(tǒng)的BMR使用時鐘數(shù)據(jù)恢復(CDR)在OLT中產(chǎn)生上行采樣時鐘。如前所述,用于GPON應用的時鐘方法要求專用的大功率電路,以滿足挑戰(zhàn)性的速度和上行通路的鎖定時間要求。因為GPON的物理層是基于現(xiàn)有的TDM設(shè)備,GPON其本身的性質(zhì)是時間環(huán),意為在OLT本地的參考時鐘可以作為參考時鐘來采樣輸入數(shù)據(jù)。AIL利用這個本地OLT時鐘源產(chǎn)生本地的625MHz時鐘。這個時鐘用來對輸入數(shù)據(jù)采樣,對連續(xù)突發(fā)模式進行動態(tài)延時,端接多個ONU時補償上行通路的相位變化。
128個抽頭的延時(每個45ps)使能多個輸入數(shù)據(jù)的連續(xù)周期,在延時鏈路中任何時間都能進行采樣。自適應輸入邏輯(AIL)監(jiān)控這個輸入數(shù)據(jù)的多個采樣,動態(tài)調(diào)整時鐘,數(shù)據(jù)相位關(guān)系,直到找到有效的采樣點。含有數(shù)據(jù)、轉(zhuǎn)換、抖動和噪聲的輸入數(shù)據(jù)信號通過延時鏈路。于是AIL通過延時鏈滑動捕獲窗,根據(jù)單獨的數(shù)據(jù)轉(zhuǎn)換尋找穩(wěn)定的數(shù)據(jù)。一旦發(fā)現(xiàn)穩(wěn)定的數(shù)據(jù),AIL將繼續(xù)監(jiān)控輸入和數(shù)據(jù),動態(tài)補償由于工藝、電壓和溫度而引起的低頻抖動,漂移和變化。用延時鏈建立數(shù)據(jù)的多個復本的新方法提供了比用高速時鐘采樣數(shù)據(jù)功耗低的解決方案。圖3為對AIL方法的觀察。
AIL窗用來從延時鏈獲取采樣數(shù)據(jù)。這個窗含有邊沿檢測寄存器和中心抽頭采樣寄存器。中心抽頭寄存器是采樣到數(shù)據(jù)的實際寄存器,隨后再送到FPGA。邊沿檢測寄存器是窗的“眼睛和耳朵”,因為其反饋提供了進行研究算法的信息。在最大的窗,采樣寄存器的每個邊有4個邊沿檢測寄存器。圖4展示了AIL窗的寄存器分布和窗的大小。
評論