數(shù)字電源將替代超越模擬電源
本文為您介紹替代傳統(tǒng)模擬控制的數(shù)字電源技術(shù):數(shù)字電源具有超過模擬方案的巨大優(yōu)勢(shì),不僅在性能方面(效率、瞬態(tài)響應(yīng)、穩(wěn)定性等),而且在上市時(shí)間和總擁有成本方面也同樣如此。數(shù)字電源正在徹底改變電源的設(shè)計(jì)方法和實(shí)現(xiàn)方式。
基本概況
Intersil用于DC/DC電源轉(zhuǎn)換的ZL2008第二代自適應(yīng)數(shù)字化電源控制器是一款業(yè)界領(lǐng)先的數(shù)字電源控制器。它適用于非隔離式降壓、升壓、降壓-升壓和隔離式單管正激或反激式轉(zhuǎn)換器。在6mm×6mm QFN封裝(圖1)內(nèi)是一個(gè)先進(jìn)的電源控制器,集成了電源轉(zhuǎn)換控制、電源管理、故障管理和遙測功能。此外,還包含一個(gè)集成的微控制器,可以運(yùn)行復(fù)雜的算法,可以適應(yīng)超越模擬方案性能的運(yùn)行。它代表了高性價(jià)比的數(shù)字電源的最新技術(shù)?;疽?guī)格見表1。
數(shù)字電源架構(gòu)與模擬架構(gòu)的對(duì)比
圖2顯示了電源轉(zhuǎn)換控制架構(gòu)從模擬(a)到現(xiàn)代數(shù)字控制(c)的進(jìn)展。模擬PWM控制器通過使用一個(gè)斜坡誤差信號(hào)來產(chǎn)生比例占空比。該誤差信號(hào)利用電阻和電容網(wǎng)絡(luò)進(jìn)行補(bǔ)償,以修改信號(hào)來穩(wěn)定控制回路。
在數(shù)字電源中最早嘗試(圖2b)的比例占空比是通過一個(gè)數(shù)字計(jì)數(shù)器(DPWM)生成的,其計(jì)數(shù)是由數(shù)字信號(hào)處理器決定的。雖然這種方法在數(shù)字實(shí)現(xiàn)方面非常強(qiáng)大,但事實(shí)證明這種方法過于昂貴,對(duì)于大多數(shù)實(shí)際應(yīng)用來說需要太多的靜態(tài)電流。
在現(xiàn)代數(shù)字電源控制(圖2c)當(dāng)中,占空比仍然是由一個(gè)數(shù)字計(jì)數(shù)器生成的,但是現(xiàn)在的計(jì)數(shù)器是由數(shù)字狀態(tài)機(jī)控制的。這個(gè)狀態(tài)機(jī)是專門為電源控制器(而不是一般功能的DSP)設(shè)計(jì)的,所以這個(gè)解決方案更符合成本效益,且需要較少的靜態(tài)電流。
圖2c的架構(gòu)采用了比例、積分、微分(PID)補(bǔ)償器來穩(wěn)定電源,而不需要一個(gè)完整的DSP來補(bǔ)償電源。誤差電壓的3個(gè)要素,誤差的比例、誤差的積分和誤差的微分結(jié)合了相對(duì)比重,以實(shí)現(xiàn)穩(wěn)定的運(yùn)行。
請(qǐng)注意,在架構(gòu)方面數(shù)字電源勝過模擬電源具備的一些優(yōu)勢(shì):數(shù)字控制無需外部元件進(jìn)行補(bǔ)償。這不僅減少了元件數(shù)量,而且可以輕而易舉地改變補(bǔ)償,包括隨時(shí)改變,甚至隨負(fù)載變化進(jìn)行適應(yīng)性改變。
典型的情況是沒有數(shù)字控制器的外部分壓器。內(nèi)部參考可以縮放,因此無需使用外部分壓器。這顯然減少了元件數(shù)量,而且還有助于在工廠精確校準(zhǔn)控制器,這樣用戶就可以受益于高精度,而無需使用昂貴的用于分壓的精密電阻。
數(shù)字架構(gòu)可以簡便地采用數(shù)字通信,這樣的操作可以進(jìn)行配置、控制,且在幾乎沒有外部元件的條件下進(jìn)行監(jiān)測。
一種數(shù)字電源控制器
圖3顯示了現(xiàn)代數(shù)字電源控制器的基本架構(gòu)。在該架構(gòu)中,輸出電壓用一個(gè)差分放大器來檢測。這個(gè)模擬信號(hào)與參考進(jìn)行比較,生成個(gè)誤差信號(hào)。該誤差信號(hào)被數(shù)字化(ADC),結(jié)果通過一個(gè)數(shù)字補(bǔ)償網(wǎng)絡(luò)進(jìn)行處理,這將在本文稍后的部分中予以描述。數(shù)字補(bǔ)償?shù)妮敵鍪且粋€(gè)占空比命令,它設(shè)定了數(shù)字PWM的持續(xù)時(shí)間。然后,數(shù)字PWM控制就可以FET驅(qū)動(dòng)器,開關(guān)電源。
輸出電壓、輸入電壓、輸出電流、溫度都可以使用一個(gè)輔助模擬數(shù)字轉(zhuǎn)換器(ADC)進(jìn)行檢測,ADC可復(fù)用到各個(gè)檢測點(diǎn)。
配置可以利用引腳跨接、電阻器配置,或通過I2C接口的命令的方式實(shí)現(xiàn)。該電源可通過引腳或I2C接口進(jìn)行控制。配置、操作和環(huán)境條件的監(jiān)測是通過I2C接口實(shí)現(xiàn)的。
優(yōu)勢(shì)
1. 更高水平的集成
圖4顯示了一個(gè)模擬PWM和數(shù)字PWM的典型應(yīng)用原理圖。盡管這兩個(gè)控制器共享相同數(shù)量的功率傳送(power train)元件(功率FET、電感器、輸入和輸出電容),模擬控制器仍需要更多的外部元件。這是因?yàn)閿?shù)字控制器集成了許多功能和特性,而這些功能和特性沒有集成在模擬控制器內(nèi)。如圖所示,數(shù)字控制器減少了十幾個(gè)元件。在實(shí)際實(shí)現(xiàn)中,數(shù)字控制器已被證明,在中高度復(fù)雜設(shè)計(jì)中可以減少多達(dá)60%的外部元件。
2. 穩(wěn)定性
圖5顯示了一個(gè)典型的電源轉(zhuǎn)換電路。該電源轉(zhuǎn)換器包括一個(gè)帶有固定調(diào)制增益Gfix的PWM控制器、高側(cè)和低側(cè)開關(guān),輸出級(jí)包含一個(gè)電感器和一個(gè)或多個(gè)電容,一個(gè)負(fù)載,以及反饋或控制回路。在這種情況下,反饋控制顯示為Type 3(或III)放大器,但可以是任何反饋控制器??刂苹芈返挠猛臼菍⑤敵雠c一個(gè)已知參考、VR進(jìn)行比較,并調(diào)整PWM信號(hào)來糾正輸出和參考之間的差額。
除了減少元件數(shù)量方面的優(yōu)勢(shì)之外,數(shù)字化還提供了進(jìn)一步的優(yōu)勢(shì),即集成的元件值可表示為存儲(chǔ)在數(shù)字寄存器中的值。這有助于根據(jù)設(shè)計(jì)的不同方便地改變這些值,甚至隨時(shí)改變,或適應(yīng)不斷變化的條件。
控制系統(tǒng)做出的任何改變都會(huì)對(duì)系統(tǒng)引入一種干擾。為實(shí)現(xiàn)一個(gè)強(qiáng)大而實(shí)用的系統(tǒng),在這種干擾存在的條件下系統(tǒng)必須保持穩(wěn)定。事實(shí)上,它必須在存在一大堆干擾的條件下保持穩(wěn)定,包括輸入電壓變化、負(fù)載變化,甚至溫度變化等等。
我們可以通過反饋路徑增益如何接近-1來描述系統(tǒng)的穩(wěn)定性。也就是說,在增益接近-1的條件下,反饋有多接近。由于相對(duì)于輸出,反饋有一個(gè)幅度(增益)和相位,我們可以用增益裕度和相位裕度來表達(dá)穩(wěn)定性,這里的增益裕度是在相位為180度時(shí),測得的相對(duì)于單位增益的增益大小有多大,以及在增益為單位增益時(shí),相位裕度是如何接近相對(duì)于180度的相位。
相位裕度和增益裕度可以通過奈奎斯特(Nyquist)圖或波特(Bode)圖來確定。由于波特圖有一個(gè)容易讀取的頻率范圍,因此是一個(gè)方便的工具,這將在本文中使用。
如果沒有反饋,圖5所示系統(tǒng)的簡化傳遞函數(shù)可以表示為:
其中:
ωesr是輸出電容esr產(chǎn)生的零點(diǎn),ωn是輸出級(jí)的固有頻率,Q是輸出級(jí)的品質(zhì)因數(shù)。
為達(dá)到本文的目的,我們將忽略電容esr零點(diǎn)的貢獻(xiàn),并重點(diǎn)關(guān)注傳遞函數(shù)的其余極點(diǎn)。也就是說,讓我們來重點(diǎn)關(guān)注傳遞函數(shù):
這個(gè)方程有兩個(gè)極點(diǎn)。對(duì)于Q0.5(阻尼情況下),兩個(gè)極點(diǎn)都是實(shí)數(shù)。對(duì)于Q>0.5(欠阻尼情況下),兩極為復(fù)共軛。
pid控制器相關(guān)文章:pid控制器原理
評(píng)論