太陽能光伏電池電氣性能的評測
rs=ΔV/ΔI
到目前為止本文所討論的測量都是對暴露在發(fā)光輸出功率下,即處于正偏條件下的PV電池進行的測量。但是PV器件的某些特征,例如分流電阻(rsh)和漏電流,恰恰是在PV電池避光即工作在反偏情況下得到的。對于這些I-V曲線,測量是在暗室中進行的,從起始電壓為0V到PV電池開始擊穿的點,測量輸出電流并繪制其與加載電壓的關(guān)系曲線。利用PV電池反偏I-V曲線的斜率也可以得到分流電阻的大?。ㄈ鐖D5所示)。從該曲線的線性區(qū),可以按下列公式計算出分流電阻:
rsh=ΔVReverseBias/ΔIReverseBias
V反偏/用于估算rsh的線性區(qū)/ΔI反偏/ΔV反偏/logI反偏
圖5.利用PV電池反偏I-V曲線的斜率可以得到PV電池的分流電阻。
除了在沒有任何光源的情況下進行這些測量之外,我們還應該對PV電池進行正確地屏蔽,并在測試配置中使用低噪聲線纜。
電容測量
與I-V測量類似,電容測量也用于太陽能電池的特征分析。根據(jù)所需測量的電池參數(shù),我們可以測出電容與直流電壓、頻率、時間或交流電壓的關(guān)系。例如,測量PV電池的電容與電壓的關(guān)系有助于我們研究電池的摻雜濃度或者半導體結(jié)的內(nèi)建電壓。電容-頻率掃描則能夠為我們尋找PV襯底耗盡區(qū)中的電荷陷阱提供信息。電池的電容與器件的面積直接相關(guān),因此對測量而言具有較大面積的器件將具有較大的電容。
C-V測量測得的是待測電池的電容與所加載的直流電壓的函數(shù)關(guān)系。與I-V測量一樣,電容測量也采用四線技術(shù)以補償引線電阻。電池必須保持四線連接。測試配置應該包含帶屏蔽的同軸線纜,其屏蔽層連接要盡可能靠近PV電池以最大限度減少線纜的誤差?;陂_路和短路測量的校正技術(shù)能夠減少線纜電容對測量精度的影響。C-V測量可以在正偏也可以在反偏情況下進行。反偏情況下電容與掃描電壓的典型曲線(如圖6所示)表明在向擊穿電壓掃描時電容會迅速增大。
圖6.PV電池電容與電壓關(guān)系的典型曲線。
另外一種基于電容的測量是激勵電平電容壓型(DLCP),可在某些薄膜太陽能電池(例如CIGS)上用于判斷PV電池缺陷密度與深度的關(guān)系。這種測量要加載一個掃描峰-峰交流電壓并改變直流電壓,同時進行電容測量。必須調(diào)整這兩種電壓使得即使在掃描交流電壓時也保持總加載電壓(交流+直流)不變。通過這種方式,材料內(nèi)部一定區(qū)域中暴露的電荷密度將保持不變,我們就可以得到缺陷密度與距離的函數(shù)關(guān)系。
電阻率與霍爾電壓的測量
PV電池材料的電阻率可以采用四針探測的方式3,通過加載電流源并測量電壓進行測量,其中可以采用四點共線探測技術(shù)或者范德堡方法。
在使用四點共線探測技術(shù)進行測量時,其中兩個探針用于連接電流源,另兩個探針用于測量光伏材料上電壓降。在已知PV材料厚度的情況下,體積電阻率(ρ)可以根據(jù)下列公式計算得到:
ρ=(π/ln2)(V/I)(tk)
其中,ρ=體積電阻率,單位是Ωcm,V=測得的電壓,單位是V,I=源電流,單位是A,t=樣本厚度,單位是cm,k=校正系數(shù),取決于探針與晶圓直徑的比例以及晶圓厚度與探針間距的比例。
測量PV材料電阻率的另外一種技術(shù)是范德堡方法。這種方法利用平板四周四個小觸點加載電流并測量產(chǎn)生的電壓,待測平板可以是厚度均勻任意形狀的PV材料樣本。
范德堡電阻率測量方法需要測量8個電壓。測量V1到V8是圍繞材料樣本的四周進行的,如圖7所示。
圖7.范德堡電阻率常用測量方法
按照下列公式可以利用上述8個測量結(jié)果計算出兩個電阻率的值:
ρA=(π/ln2)(fAts)[(V1–V2+V3–V4)/4I]
ρB=(π/ln2)(fBts)[(V5–V6+V7–V8)/4I]
其中,ρA和ρB分別是兩個體積電阻率的值,ts=樣本厚度,單位是cm,V1–V8是測得的電壓,單位是V,I=流過光伏材料樣品的電流,單位是A,fA和fB是基于樣本對稱性的幾何系數(shù),它們與兩個電阻比值QA和QB相關(guān),如下所示:
QA=(V1–V2)/(V3–V4)
QB=(V5–V6)/(V7–V8)
當已知ρA和ρB的值時,可以根據(jù)下列公式計算出平均電阻率(ρAVG):
ρAVG=(ρA+ρB)/2
高電阻率測量中的誤差可能來源于多個方面,包括靜電干擾、漏電流、溫度和載流子注入。當把某個帶電的物理拿到樣本附近時就會產(chǎn)生靜電干擾。要想最大限度減少這些影響,應該對樣本進行適當?shù)钠帘我员苊馔獠侩姾?。這種屏蔽可以采用導電材料制作,應該通過將屏蔽層連接到測量儀器的低電勢端進行正確的接地。電壓測量中還應該使用低噪聲屏蔽線纜。漏電流會影響高電阻樣本的測量精度。漏電流來源于線纜、探針和測試夾具,通過使用高質(zhì)量絕緣體,最大限度降低濕度,啟用防護式測量,包括使用三軸線纜等方式可以盡量減少漏電流。
脈沖式I-V測量
除了直流I-V和電容測量,脈沖式I-V測量也可用于得出太陽能電池的某些參數(shù)。特別是,脈沖式I-V測量在判斷轉(zhuǎn)換效率、最短載流子壽命和電池電容的影響時一直非常有用。
本文詳細介紹的這些PV測量操作都可以利用針對半導體評測設(shè)計的自動化測試系統(tǒng)快速而簡便地實現(xiàn),例如來自吉時利儀器公司的4200-SCS半導體特征分析系統(tǒng)4。該系統(tǒng)能夠采用四針探測方式提供并吸收電流,并支持軟件控制的電流、電壓和電容測量。該系統(tǒng)可以配置各種源和測量模塊,進行連續(xù)式的和脈沖式的I-V與C-V測量,得到一些重要的PV電池參數(shù)。例如,該系統(tǒng)可以利用4225-PMU模塊連接到PV電池上進行脈沖式I-V掃描(如圖8所示)5。除了提供脈沖電壓源,該PMU還能夠吸收電流,從而測出太陽能電池的輸出電流,如圖9所示。4200-SCS系統(tǒng)支持各種硬件模塊和軟件測量函數(shù)庫。
太陽能電池/SMA同軸線連接公共端
圖8.4225-PMU模塊可用于PV電池的脈沖式I-V測量
圖9.硅PV電池脈沖式I-V測量的繪圖表示曲線
評論