TI案例:以較少電容達到更快速的瞬時響應
對于復雜的電路板,如高階通信系統,設計人員愈來愈需要為不同的DSP、FPGA、ASIC和微處理器提供更多的電壓軌。目前必須面對的電源系統設計挑戰(zhàn),是在高速數字電路產生電流瞬時的情況下,將電壓偏差降到最低。越來越需要關注的問題是,在使用先進IC時,如最新的GHz級DSP、FPGA、ASIC和微處理器,電流瞬時期間會出現輸出電壓的峰值偏差。如果核心電壓(VCC)超出指定的容差上限,IC必須重設,否則會發(fā)生邏輯錯誤。為避免發(fā)生這種狀況,設計人員需要更注意所使用的負載點(point-of-load, POL)模塊瞬時效能。
最新GHz級DSP之類的數字負載需要相當快速的瞬時響應,以及相當低的電壓偏差。為達到這些目標,通常需要為DC/DC轉換器加裝多個輸出電容,讓它在回饋回路響應前有足夠的維持時間。使用電源模塊,并加裝電容以符合電壓瞬時容差后,便形成一套完整的電源解決方案。
由于設計人員逐漸增加輸出電容,因此瞬時幅度會降低,然而,增加電容會降低電源系統頻寬,高電能儲存的優(yōu)點會被緩慢的響應時間抵消。
更快速的瞬時響應
借由創(chuàng)新的DC/DC電源模塊技術,系統設計人員如今能夠運用較少的輸出電容,達到更快速的瞬時響應及更低的電壓偏差。德州儀器的T2系列新一代PTH模塊(見圖1)便是其中一例,這個系列的模塊結合一項全新的TurboTrans技術,能夠大幅減少客戶為達到特定電壓偏差目標而使用輸出電容的需求。這項專利技術的運作方式是修改模塊的控制回路,讓設計人員自行調整模塊,以符合特定的瞬時負載需求,只需增加一個外部電阻就可以完成調整工作。
圖1 采用TurboTrans的T2電源模塊
在高瞬時負載的應用中,TurboTrans技術能夠讓設計人員減少高達8倍數量的輸出電容,同時將電壓偏差降低,因此能夠節(jié)省電容成本與印刷電路板空間。這項技術的另一項優(yōu)點是提升超低ESR電容的穩(wěn)定性。設計人員便能夠使用較新的Oscon輸出電容、聚合物鉭質輸出電容或所有陶瓷輸出電容,而完全不需顧慮穩(wěn)定性問題。如此一來,便能夠運用可達到高溫無鉛焊錫規(guī)范的電容技術。
更快速的瞬時響應與更低的電壓偏差
TurboTrans技術能夠減少增加電容以達到特定瞬時目標的需求。對于TI的額定30A PTH08T210W之類的模塊,經證實可減少高達8倍數量的電容。圖2顯示改變量為5A/μs的10A負載步階所需的50mV最大偏差瞬時目標范例。第一張圖顯示 PTH08T210W以470μF的最低需求輸出電容運作,而且TurboTrans功能已關閉。電壓偏差由于瞬時而達到150mV。為滿足所需的50mV偏差值,設計人員總共需要10 560μF的輸出電容,如第二張圖所示,這是未使用Turbo Trans功能的模塊常見的結果。第三張圖則顯示使用TurboTrans功能的結果,其中只需要1320μF的輸出電容。
圖2 瞬時響應vs.電容
這個范例顯示減少的電容有8倍之多。當然,減少所需的電容與使用的電容類型有關,因為每個電容類型都有各自的寄生阻抗。不同的電容類型有不同的ESR與ESL特性,低ESR電容貯電模塊相當適合采用TurboTrans技術。
透過先進的TurboTrans技術,系統設計人員如今能夠在較短的設計過程中以極低的成本使用POL模塊,以達到特定的瞬時負載需求。如圖3所示,這只需要在T2系列模塊的VSENSE接腳與TurboTrans接腳之間接上電阻,從而就可根據數據表決定電阻的值與所需的電容數量。
圖3 接上TurboTrans的T2系列電源模塊
許多設計人員發(fā)現可以使用所有陶瓷電容或聚合物鉭質電容,因為這些電容的體積很小,而且可達到無鉛焊錫的規(guī)范。在過去,使用這些電容會引發(fā)某些POL電源模塊的穩(wěn)定性疑慮。使用TurboTrans后,T2模塊的穩(wěn)定性會實質提升,因此可達到適切控制的瞬時負載響應(見圖4)。
圖4 使用及不使用TurboTrans時的輸出電壓偏差
提升效能與設計彈性
另一方面,TI的SmartSync功能也能夠協助系統設計人員使用需要復雜電源配置設定的IC。當電源模塊以不同頻率運作時,這些頻率的總和與差異所造成的拍差頻率(beat frequency)會使EMI濾波不易達成。圖5顯示兩個信號范例,第一個信號的頻率為300kHz,第二個信號的頻率為301kHz。拍差頻率為1kHz。SmartSync能夠讓設計人員將多個T2模塊的切換頻率同步為特定頻率,經過同步的模塊可消除拍差頻率,并且使EMI濾波更容易達成。
圖5 產生1kHz拍差頻率的兩個POL電源模塊
SmartSync允許將同步頻率設定為高于或低于模塊的一般自由運作頻率。SmartSync可用來為頻率范圍介于240~400kHz之間的T2模塊進行同步,因此能夠讓此設計發(fā)揮最佳化的模塊效率,也可用于不讓噪聲敏感電路出現這類頻率,以便將切換噪聲保持在特定的范圍之外(也就是接收器的IF頻率)。可一并同步的T2模塊沒有數量方面的限制。
這項技術的另一項優(yōu)點是減少輸入電容。T2模塊能夠以不同的相位角度進行同步 (使用外部電路系統)。在某些應用中,這可平衡來源電流,并且能夠使用較小的輸入電容。
輸出調節(jié)的改善
相較于前幾代的5%容差,TI的全新TCI6482、FPGA、ASIC及微處理器等先進DSP需要更小的3%核心電壓(VCC)容差,這個容差必須包含由于靜態(tài)(DC)與動態(tài)(AC)等操作條件變更而造成的所有輸出電壓偏差。為符合這項規(guī)格,T2電源模塊的設計必須達到更小的1.5% DC容差,做法包括設定點精確性、負載/線路調節(jié)、溫度變化與長時間漂移。
如果DC容差為1.5%,則由于瞬時負載造成的AC偏差必須小于1.5%。全新的T2電源模塊結合相當嚴格的DC調節(jié)與TurboTrans技術,可便于將任何運作條件下的輸出電壓維持在3%的容差內。所有T2電源模塊都含有差動遙感(differential remote sense),可協助在負載時維持這個高度精確性。
評論