新聞中心

EEPW首頁(yè) > 嵌入式系統(tǒng) > 設(shè)計(jì)應(yīng)用 > 基于光電傳感和路徑記憶的智能車導(dǎo)航系統(tǒng)的研究設(shè)計(jì)

基于光電傳感和路徑記憶的智能車導(dǎo)航系統(tǒng)的研究設(shè)計(jì)

作者: 時(shí)間:2012-05-10 來(lái)源:網(wǎng)絡(luò) 收藏

  雙排排列與前瞻設(shè)計(jì)

  本文開發(fā)了智能車性能仿真平臺(tái)[2],對(duì)傳感器的布局進(jìn)行了深入研究[3]。由于轉(zhuǎn)向舵機(jī)、電機(jī)和車都是高階慣性延遲環(huán)節(jié),從輸入到輸出需要一定的時(shí)間, 越早知道前方道路的信息,就越能減小從輸入到輸出的滯后。檢測(cè)車前方一定距離的賽道就叫前瞻,在一定的前瞻范圍內(nèi),前瞻越大的傳感器方案,其極限速度就會(huì) 越高,其高速行駛過(guò)程中對(duì)引導(dǎo)線的跟隨精度也相對(duì)較高,系統(tǒng)的整體響應(yīng)性能較好。因此路徑識(shí)別模塊設(shè)計(jì)成抬起與地面形成一個(gè)夾角,前排傳感器用于前瞻,后 排傳感器對(duì)賽道始點(diǎn)進(jìn)行識(shí)別、計(jì)算車身縱軸線與賽道中心線的偏差斜率,以利于更好地調(diào)整車輛的姿態(tài)。

  為了保證在離地間隙盡可能大的情況下器仍然有足夠大的發(fā)光強(qiáng)度,本文采用了大電流脈沖觸發(fā)發(fā)光的控制方式。

  根據(jù)實(shí)驗(yàn)測(cè)試,發(fā)光管在發(fā)光時(shí),經(jīng)過(guò)的電流約為0.5A。如果用15個(gè)傳感器,則瞬時(shí)電流為7.5A。這樣大的電流肯定會(huì)對(duì)電池電壓造成一定的 沖擊,不利于整個(gè)系統(tǒng)的正常運(yùn)行。因此將前后排傳感器的發(fā)光時(shí)間錯(cuò)開,通過(guò)兩套觸發(fā)電路來(lái)控制發(fā)光。這樣就有效減小了紅外發(fā)光管發(fā)光時(shí)對(duì)電池電壓的沖擊。

  轉(zhuǎn)向和驅(qū)動(dòng)控制與算法

  驅(qū)動(dòng)電機(jī)控制

  本文在電機(jī)輸出軸上加一齒盤,電機(jī)輸出軸的轉(zhuǎn)動(dòng)帶動(dòng)齒盤的轉(zhuǎn)動(dòng)。將對(duì)射光偶發(fā)光和接受管放在碼盤兩側(cè)。碼盤轉(zhuǎn)動(dòng)時(shí),由于碼盤上的齒經(jīng)過(guò)發(fā)光管發(fā)出的光線時(shí),會(huì)阻礙光線傳播。所以接收管兩端的電阻會(huì)有很大的變化,這樣,在電路中采樣電阻兩端的電壓就會(huì)有很大的變化。

  用處理器上的脈沖捕捉端口采集電壓脈沖單位時(shí)間內(nèi)的個(gè)數(shù),就會(huì)獲得電機(jī)轉(zhuǎn)速,從而獲得車速。

  電機(jī)驅(qū)動(dòng)采用的是飛思卡爾公司的MC33886。所不同的是本文采用了三片MC33886 并聯(lián),一方面可以減小導(dǎo)通電阻,提高電機(jī)驅(qū)動(dòng)能力,并且MC33886的發(fā)熱情況也有了很大的好轉(zhuǎn);另一方面減小MC33886 內(nèi)部的過(guò)流保護(hù)電路對(duì)電機(jī)啟動(dòng)及制動(dòng)時(shí)的影響。

  電機(jī)采用PID閉環(huán)控制,可以根據(jù)不同負(fù)載狀況及時(shí)調(diào)整PWM的占空比,使車輛迅速地跟蹤目標(biāo)速度。

  為了盡量提高車速,采用在直道上設(shè)定最高目標(biāo)車速,定速控制,接近彎道處開始降速,正式轉(zhuǎn)入彎道時(shí),將車速調(diào)整到過(guò)彎極限車速,將要出彎道時(shí)提前加速。

  轉(zhuǎn)向控制

  根據(jù)目前采用的雙排模擬式器布局,可以得到車身縱軸線距離賽道中心線的偏移量,還可以得到中心線相對(duì)于車身縱軸線的斜率,從而得知當(dāng)前狀態(tài)下車身的姿態(tài),進(jìn)而進(jìn)行轉(zhuǎn)向控制。

  這里設(shè)定根據(jù)前排傳感器信號(hào)得到的轉(zhuǎn)角為θ1,根據(jù)前后排傳感器信號(hào)得到的縱軸線斜率信息而得到的轉(zhuǎn)角為θ2,最終的轉(zhuǎn)向角度的確定公式為:

  θ=k1θ1+k2θ2

  采用這樣的控制策略,可以實(shí)現(xiàn)對(duì)車實(shí)際姿態(tài)的加權(quán)控制,大大提高過(guò)彎速度,減少由于探測(cè)精度問(wèn)題帶來(lái)的決策累積誤差。另外,大前瞻與雙排的雙重組合,達(dá)到了對(duì)正常彎道提前轉(zhuǎn)彎,對(duì)于S彎道遲滯轉(zhuǎn)向的特性。

  為了使舵機(jī)更好地對(duì)給定的轉(zhuǎn)角值做出響應(yīng),采用了PID調(diào)節(jié),通過(guò)道路試驗(yàn)進(jìn)行參數(shù)整定,使得車輛在高速時(shí)保持了很高的穩(wěn)定性。

  算法

  由于比賽規(guī)則要求車輛在跑道上行駛兩圈,因此車輛第一圈時(shí)通過(guò)記錄轉(zhuǎn)速傳感器采集到的脈沖數(shù)、轉(zhuǎn)向舵機(jī)的轉(zhuǎn)角等信息,來(lái)判斷區(qū)分直道、彎道、S 彎道以及轉(zhuǎn)彎的方向與轉(zhuǎn)彎半徑等等信息。根據(jù)第一圈記錄的數(shù)據(jù)信息,可以對(duì)第二圈的各個(gè)道路點(diǎn)進(jìn)行分段處理。直道上采用最高速加速,在進(jìn)入彎道之前提前進(jìn) 行減速,減至過(guò)彎的極限最高車速,對(duì)于不同半徑的彎道,選擇不同的車速。算法的優(yōu)勢(shì)在于對(duì)于復(fù)雜的S彎道,可以實(shí)現(xiàn)類似CCD探測(cè)頭達(dá)到的效果, 選用小的轉(zhuǎn)向角度通過(guò),這樣可以大大縮短時(shí)間。具體算法請(qǐng)見(jiàn)[4]。

  經(jīng)驗(yàn)及結(jié)論

  本文的智能車開發(fā)工作經(jīng)過(guò)6輪開發(fā)迭代,從最初的小前瞻單排數(shù)字式傳感器,發(fā)展成脈沖發(fā)光、大前瞻、雙排排列、模擬式傳感器方案;控制策略從單純的PID控制升級(jí)到路徑記憶控制,使得車輛的導(dǎo)航性能有了很大提高。通過(guò)智能車開發(fā)過(guò)程,得出一些經(jīng)驗(yàn)。

  *開發(fā)之初需要對(duì)器特性、轉(zhuǎn)向舵機(jī)特性、驅(qū)動(dòng)電機(jī)特性、車輛機(jī)械性能、轉(zhuǎn)向側(cè)滑特性、電池特性等進(jìn)行實(shí)際的檢測(cè)。

  *根據(jù)汽車?yán)碚搶?duì)車輛進(jìn)行規(guī)則容許范圍之內(nèi)的結(jié)構(gòu)調(diào)整,使之達(dá)到較佳的機(jī)械性能。

  *組委會(huì)開發(fā)了仿真平臺(tái),應(yīng)該充分利用該仿真工具對(duì)基于光電傳感器的路徑識(shí)別方案進(jìn)行研究,結(jié)合硬件的選型和自身在控制及電子方面的經(jīng)驗(yàn),確定路徑識(shí)別方案。前瞻距離較遠(yuǎn)的方案有助于提高車輛的通過(guò)速度。

  *車輛的控制采用PID即可滿足要求,參數(shù)的整定需要結(jié)合道路試驗(yàn)進(jìn)行。車速的加快和減慢不要太劇烈,平穩(wěn)的控制也可以取得很好的效果。

  過(guò)大的加速度會(huì)導(dǎo)致電機(jī)和驅(qū)動(dòng)芯片的過(guò)熱以致驅(qū)動(dòng)性能下降。

  本文介紹了第一屆大學(xué)生智能車比賽冠軍車的總體方案、路徑識(shí)別方案選擇、轉(zhuǎn)向和驅(qū)動(dòng)控制及路徑記憶算法等內(nèi)容。由于采用大前瞻光電傳感器,需要 較大的電流,使得電池電能的消耗較大,跑道距離較長(zhǎng)時(shí),車輛電池電量下降較快,使得車輛競(jìng)速性能下降。路徑記憶算法的模糊尋跡算法也有待改進(jìn)。而攝像頭路 徑識(shí)別方案既可以實(shí)現(xiàn)大的前瞻,電能消耗又較低,這些是今后努力的方向。


上一頁(yè) 1 2 下一頁(yè)

評(píng)論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉