新聞中心

EEPW首頁 > 模擬技術 > 設計應用 > 一種高性能Pierce時鐘晶體振蕩器電路設計

一種高性能Pierce時鐘晶體振蕩器電路設計

作者: 時間:2014-07-17 來源:網(wǎng)絡 收藏

  其中,ID4、ID5分別為流過M4,M5的電流,N為亞閾值斜率參數(shù)。將VGS4-VGS5=4I×R1,代入等式(4)中可得

本文引用地址:http://m.butianyuan.cn/article/249839.htm

  

一種高性能時鐘晶體振蕩器電路設計

 

  ,該偏置電流與電源無關,通過選取適當?shù)腞1值,便可設置所需的偏置電流。設計取電流I≈8 nA,確保電路具有較低的功耗。

  圖2中電阻R2跨接在M4柵漏兩端,MOS管的柵端無電流,因此M4柵漏間的直流電壓相等。若漏電流保持不變,M4柵極上的平均電壓應保持不變。當開始工作后,振蕩輸出的信號經(jīng)電容C0隔直通交后,傳遞M4的柵極。當振幅增大時,若要保持恒定的偏置電流不變,M4柵極直流電壓必定下降,因此M5的柵極電壓也必定隨著振幅增大而下降,從而使偏置電流I減小。反向放大器的偏置電流由電流源M3確定,大小為16I,因而當的輸出振幅振蕩增大時,系統(tǒng)降低反向放大器的偏置電流,以到達穩(wěn)定振幅、減小功耗的目的。

  2.3 反向放大電路模塊與啟動電路模塊的設計

  改進后的電路結構還包含反向放大電路模塊和啟動電路模塊。反相放大電路采用恒流偏置共源放大器,由M3提供恒流偏置,M6為共源放大管,R3為負反饋電阻。恒流偏置電流的大小為16I,受振幅控制電路調制。

  啟動電路模塊,保證電路上電后能正常啟動。在直流偏置未建立時,M9輸出電流為0,M10導通使反相器I1輸出低電平,PMOS管M11導通,給電容C3充電,使B點電壓升高,從而M2,M5導通,保證偏置電流可正常建立。當直流偏置建立后,M9通過鏡像產(chǎn)生10I的電流,M10管的柵長值L過大,使反向器I1輸出變?yōu)楦唠娖?,關斷M11,電路完成啟動。

  3 電路仿真結果及討論

  3.1 晶體振蕩電路環(huán)路增益與相位仿真

  仿真采用0.5μm-5 V CMOS工藝模型,仿真溫度設定25℃,仿真工具是Spectre。圖3是設計的晶體振蕩電路環(huán)路增益與相位仿真結果,電源電壓分別設定為3 V和1.1 V,晶體負載電容為6 pF的條件下,從仿真圖中可看出,在頻率為32.768 1 kHz處,環(huán)路增益為5.285 5,相位為0,在該頻率處滿足振蕩的條件。當電壓下降到1.1 V時,同樣在頻率為32.7681kHz處,環(huán)路增益為3.833 0,相位為0,也滿足振蕩條件。這表明其可在1.1V電壓下正常振蕩,電路具有較寬的工作電壓范圍。

  

 

  3.2 晶體振蕩電路瞬態(tài)仿真

  圖4和圖5均為電源電壓為3 V時,振蕩電路的瞬態(tài)仿真結果,其分別反映了振蕩電路的輸出波形以及電路消耗的電流。從圖中可看出,振幅控制的過程:在起振初期振幅較小時,電路消耗較大的電流,隨著振幅的增大,振幅控制電路調控偏置電流,使電路消耗的電流降低。當電路穩(wěn)定后,電流最終消耗值約為130 nA,振蕩電路輸出波形峰峰值為367.2 mV。電路消耗極低的功耗,且起振時間<1 s。

  

 

  

 

  3.3 頻率校準仿真

  圖6為頻率校準范圍的仿真圖,設計取Cx=4.4 pF,C=62fF。調整校正寄存器的存儲值,使晶體的負載電容分別為最大值、初始值和最小值。仿真得到滿足起振條件的初始頻率為32.768 1 kHz,頻率校準范圍為(32.765 8 kHz,32.777 9 kHz),校準的平均精度為1.44ppm。通過校準電路可獲得高精度的輸出頻率。

  

 

  4 結束語

  高精度使得時鐘芯片的市場前景廣闊。本文對傳統(tǒng)振蕩器結構進行了改進,反向放大器采用恒流源供電,增加振幅控制及頻率校準電路。仿真結果表明,新結構的電路具有低功耗、高輸出頻率精度和寬工作電壓范圍等優(yōu)點。

萬能遙控器相關文章:萬能遙控器代碼


電氣符號相關文章:電氣符號大全


晶振相關文章:晶振原理

上一頁 1 2 下一頁

關鍵詞: 振蕩器 Pierce 晶振

評論


相關推薦

技術專區(qū)

關閉