基于S參數(shù)對(duì)射頻開(kāi)關(guān)模型進(jìn)行高頻驗(yàn)證
S參數(shù)簡(jiǎn)介
本文引用地址:http://m.butianyuan.cn/article/259818.htmS (散射)參數(shù)用于表征使用匹配阻抗的電氣網(wǎng)絡(luò)。這里的散射是電流或電壓在傳輸線路中斷情況下所受影響的方式。利用. S參數(shù) 可以將一個(gè)器件看作一個(gè)具有輸入和相應(yīng)輸出的“黑匣子”,這樣就可以進(jìn)行系統(tǒng)建模而不必關(guān)心其實(shí)際結(jié)構(gòu)的復(fù)雜細(xì)節(jié)。
當(dāng) 今集成電路的帶寬不斷提高,因而必須在寬頻率范圍內(nèi)表征其性能。傳統(tǒng)的低頻參數(shù),如電阻、電容和增益等,可能與頻率有關(guān),因此可能無(wú)法全面描述IC在目標(biāo) 頻率的性能。此外,要在整個(gè)頻率范圍內(nèi)表征一個(gè)復(fù)雜IC的每個(gè)參數(shù)可能是無(wú)法實(shí)現(xiàn)的,而使用S參數(shù)的系統(tǒng)級(jí)表征則可以提供更好的數(shù)據(jù)。
可以 使用一個(gè)簡(jiǎn)單的RF繼電器來(lái)演示高頻模型驗(yàn)證技術(shù)。如圖1所示,可以將RF繼電器看作一個(gè)三端口器件:一個(gè)輸入端口、一個(gè)輸出端口和一個(gè)用于開(kāi)關(guān)電路的控 制端口。如果器件性能與控制端無(wú)關(guān),一旦設(shè)定后,就可以將繼電器簡(jiǎn)化為一個(gè)雙端口器件。因此,可以通過(guò)觀察輸入端和輸出端的行為來(lái)全面表征該器件。
圖1. RF繼電器模型
要理解S參數(shù)的概念,必須知道一些傳輸線理論。與大家熟悉的直流理論相似,在高頻時(shí),最大傳輸功率與電源的阻抗和負(fù)載的阻抗有關(guān)。來(lái)自一個(gè)阻抗為ZS,的電源的電壓、電流和功率,沿著一條阻抗為 Z0, 的傳輸線路,以波的形式行進(jìn)到阻抗為 ZL的負(fù)載。如果 ZL = Z0, 則全部功率都會(huì)從電源傳輸?shù)截?fù)載。如果 ZL ≠ Z0, 則某些功率會(huì)從負(fù)載反射回電源,不會(huì)發(fā)生最大功率傳輸。入射波和反射波之間的關(guān)系通過(guò)反射系數(shù)Γ來(lái)表示,它是一個(gè)復(fù)數(shù),包含關(guān)于信號(hào)的幅度和相位信息。
如果 Z0 和 ZL 完全匹配,則不會(huì)發(fā)生反射,Γ = 0。如果 ZL i開(kāi)路或短路,則Γ = 1,表示完全不匹配,所有功率都反射回 ZS。大多數(shù)無(wú)源系統(tǒng)中,ZL不與Z0, 完全相等,因此0 Γ 1。要使Γ大于1,系統(tǒng)必須包含一個(gè)增益元件,但RF繼電器示例將不考慮這一情況。反射系數(shù)可以表示為相關(guān)阻抗的函數(shù),因此Γ可以通過(guò)下式計(jì)算:
(1) → (2)
假設(shè)傳輸線路為一個(gè)雙端口網(wǎng)絡(luò),如圖2所示。在這種表示方法中,可以看出,每個(gè)行進(jìn)波都由兩部分組成。從雙端口器件的輸出端流到負(fù)載的總行進(jìn)波部分, b2, 實(shí)際上是由雙端口器件的輸出端反射的一部分 a2 和透射器件的一部分 a1,組成。反之,從器件輸入端流回電源的總行進(jìn)波 b1 則是由輸入端反射的一部分 a1 和返回器件的一部分a2組成
圖2. S參數(shù)模型
根據(jù)以上的說(shuō)明,可以利用S參數(shù)列出用來(lái)確定反射波值的公式。反射波和發(fā)射波計(jì)算公式分別如式3和式4所示。
(3)
(4)
如果ZS = Z0 (雙端口輸入的阻抗),則不會(huì)發(fā)生反射, a1 = 0。 如果 ZL = Z0(雙端口輸出的阻抗),則不會(huì)發(fā)生反射,a2 = 0。因此,我們可以根據(jù)匹配條件定義S參數(shù),如下所示:
(5)
(6)
(7)
(8)
其中:
S11 = 輸入反射系數(shù)
S12 = 反向透射系數(shù)
S21 = 正向透射系數(shù)
S22 = 反向反射系數(shù)
通過(guò)這些公式可以完整描述任何雙端口系統(tǒng),正向和反向增益分別用S21和S12, 來(lái)表征,正向和反向反射功率分別用S11 和 S22來(lái)表征。
要在實(shí)際系統(tǒng)中求解上述參數(shù),ZS, Z0, 和 ZL必須匹配。對(duì)于大多數(shù)系統(tǒng),這很容易在寬頻率范圍內(nèi)實(shí)現(xiàn)。
設(shè)計(jì)和測(cè)量傳輸線路阻抗
為確保雙端口系統(tǒng)具有匹配的阻抗,必須測(cè)量 ZS, Z0, 和 ZL. 多數(shù)RF系統(tǒng)工作在50 Ω環(huán)境下。 ZS 和 ZL一般受所用矢量網(wǎng)絡(luò)分析儀 (VNA)的類(lèi)型限制,但可以設(shè)計(jì) Z0 使之與VNA阻抗匹配。
傳輸線路設(shè)計(jì)
傳輸線路的阻抗由線路上的電感和電容的比值設(shè)置。圖3所示為一個(gè)簡(jiǎn)單的傳輸線路模型。
圖3. 傳輸線路的集總元件模型
利用計(jì)算目標(biāo)頻率時(shí)的復(fù)阻抗的公式,確定獲得特定阻抗所需的 L 和 C的值。調(diào)整 L 和 C 的方式取決于傳輸線路模型的類(lèi)型,最常用的模型是微帶線和共平面波導(dǎo).模型。利用物理參數(shù),例如從走線到地層的距離、走線寬度和PCB基板介電常數(shù)等,可 以平衡電感和電容,從而提供所需的阻抗。設(shè)計(jì)傳輸線路阻抗的最簡(jiǎn)單方法是使用阻抗設(shè)計(jì)程序,此類(lèi)程序有很多。
測(cè)量阻抗
設(shè) 計(jì)并生產(chǎn)出傳輸線路后,必須測(cè)量其阻抗,以驗(yàn)證設(shè)計(jì)和實(shí)施無(wú)誤。一種測(cè)量阻抗的方法是使用 時(shí)域反射 TDR測(cè)量可以反映PCB走線的信號(hào)完整度。TDR沿著信號(hào)線發(fā)送一個(gè)快速脈沖,并記錄反射情況,然后利用反射信息計(jì)算距離信號(hào)源特定長(zhǎng)度處的路徑阻抗。 利用阻抗信息可以找到信號(hào)路徑中的開(kāi)路或短路,或者分析特定點(diǎn)的傳輸線路阻抗。
TDR的工作原理是:對(duì)于一個(gè)不匹配的系統(tǒng),在信號(hào)路徑上的 不同點(diǎn),反射會(huì)與信號(hào)源相加或相減(相長(zhǎng) 和相消 干涉). 如果系統(tǒng)(本例中為傳輸線路)匹配50 Ω,則信號(hào)路徑上不會(huì)發(fā)生發(fā)射,信號(hào)保持不變。然而,如果信號(hào)遇到開(kāi)路,反射將與信號(hào)相加,使之加倍;如果信號(hào)遇到短路,反射將通過(guò)相減與之抵消。
如果信號(hào)遇到一個(gè)端接電阻,其值稍高于正確的匹配阻抗,則在TDR響應(yīng)中會(huì)看到一個(gè)凸起;若端接電阻值稍低于匹配阻抗,則在TDR響應(yīng)中會(huì)出現(xiàn)一個(gè)凹陷。對(duì)于容性或感性端接,將看到相似的響應(yīng),因?yàn)殡娙菰诟哳l時(shí)短路,電感在高頻時(shí)開(kāi)路。
在所有影響TDR響應(yīng)精度的因素中,最重要的一個(gè)是沿信號(hào)路徑發(fā)送的TDR脈沖的上升時(shí)間。脈沖的上升時(shí)間越快,則TDR可以分辨的特征越小。
根據(jù)TDR設(shè)備設(shè)定的上升時(shí)間,系統(tǒng)可以檢測(cè)的兩個(gè)不連續(xù)點(diǎn)之間的最短空間距離為:
(9)
其中:
lmin = 從信號(hào)源到不連續(xù)點(diǎn)的最短空間距離
c0 = 光在真空中的傳播速度
trise = 系統(tǒng)的上升時(shí)間
εeff = 波在其中行進(jìn)的介質(zhì)的有效介電常數(shù)
若是檢測(cè)相對(duì)較長(zhǎng)的傳輸線路,20 ps到30 ps的上升時(shí)間即足夠;但若要檢測(cè)集成電路器件的阻抗,則需要比這快得多的上升時(shí)間。
記錄TDR阻抗測(cè)量結(jié)果有助于解決傳輸線路設(shè)計(jì)的各種問(wèn)題,如錯(cuò)誤的阻抗、連接器結(jié)點(diǎn)引起的不連續(xù)以及焊接相關(guān)問(wèn)題等。
精確記錄S參數(shù)
一旦完成PCB和系統(tǒng)的設(shè)計(jì)與制造,就必須在設(shè)定的功率和一系列頻率下利用VNA記錄下S參數(shù);VNA應(yīng)經(jīng)過(guò)校準(zhǔn),確保記錄的精確性。校準(zhǔn)技術(shù)的選擇取決于多種因素,如目標(biāo)頻率范圍和待測(cè)器件(DUT)所需的 參考平面等。
校準(zhǔn)技術(shù)
圖4顯示了雙端口系統(tǒng)的完整12項(xiàng)誤差模型及其系統(tǒng)性影響和誤差源。測(cè)量頻率范圍會(huì)影響校準(zhǔn)選擇:頻率越高,則校準(zhǔn)誤差越大。隨著更多誤差項(xiàng)變得顯著,必須更換校準(zhǔn)技術(shù)以適應(yīng)高頻影響。
圖4. 完整的雙端口12項(xiàng)誤差模型
一種廣為采用的VNA校準(zhǔn)技術(shù)是SOLT(短路、開(kāi)路、負(fù)載、透射)校準(zhǔn),也稱為T(mén)OSM(透射、開(kāi)路、短路、匹配)校準(zhǔn)。它很容易實(shí)現(xiàn),只需要一組已知的 標(biāo)準(zhǔn)元件,并在正向和反向兩種條件下進(jìn)行測(cè)量。標(biāo)準(zhǔn)元件可以隨同VNA一起購(gòu)買(mǎi),或者從其他制造商購(gòu)買(mǎi)。對(duì)標(biāo)準(zhǔn)元件進(jìn)行測(cè)量后,就可以確定實(shí)測(cè)響應(yīng)與已知 響應(yīng)的差異,從而計(jì)算系統(tǒng)性誤差。
SOLT校準(zhǔn)將VNA測(cè)量的參考平面定位于校準(zhǔn)期間所用同軸電纜的端部。SOLT校準(zhǔn)的缺點(diǎn)是:參考平面之間的任何互連,包括SMA連接器和PCB走線等,都會(huì)影響測(cè)量;隨著測(cè)量頻率提高,這些會(huì)變成更大的誤差源。SOLT校準(zhǔn)只能消除圖4中顯示的6個(gè)誤差項(xiàng),但它能為低頻測(cè)量提供精確的結(jié)果,并具有容易實(shí)施的優(yōu)點(diǎn)。
另一種有用的VNA校準(zhǔn)技術(shù)是TRL(透射、反射、線路)校準(zhǔn)。該技術(shù)僅基于短傳輸線路的特征阻抗。利用兩條傳輸線路彼此相差較短長(zhǎng)度的兩組雙端口測(cè)量結(jié)果 及兩組反射測(cè)量結(jié)果,就可以確定完整的12項(xiàng)誤差模型。可以在DUT的PCB上設(shè)計(jì)TRL校準(zhǔn)套件,以便利用該校準(zhǔn)技術(shù)消除傳輸線路設(shè)計(jì)和互連引起的誤 差,并將測(cè)量的參考平面從同軸電纜移動(dòng)到DUT引腳。
以上兩種校準(zhǔn)技術(shù)各有長(zhǎng)處,但TRL可以消除更多誤差源,因而能夠?yàn)楦哳l測(cè)量提供更高 的精度。然而,TRL需要精確的傳輸線路設(shè)計(jì)和目標(biāo)頻率下的精確TRL標(biāo)準(zhǔn)元件,因此更難以實(shí)施。SOLT的實(shí)施則相對(duì)簡(jiǎn)單,因?yàn)榇蠖鄶?shù)VNA都帶有可以 在寬頻率范圍內(nèi)使用的SOLT標(biāo)準(zhǔn)套件。
PCB設(shè)計(jì)和實(shí)現(xiàn)
為了正確校準(zhǔn)VNA,適當(dāng)?shù)腜CB設(shè)計(jì)至關(guān)重要。TRL等技術(shù)可以補(bǔ)償PCB設(shè)計(jì)的誤差,但無(wú)法完全消除誤差。例如,設(shè)計(jì)采用TRL校準(zhǔn)的PCB時(shí),S21(如RF繼電器的插入損耗等)的值必須很低,為了精確測(cè)量S參數(shù),需要考慮透射標(biāo)準(zhǔn)的回?fù)p(S11, S22) 回?fù)p是指阻抗不匹配導(dǎo)致反射回信號(hào)源的輸入功率。無(wú)論P(yáng)CB走線的設(shè)計(jì)多么好,總是存在一定程度的不匹配。大多數(shù)PCB制造商只能保證?5%的阻抗匹配精 度,甚至達(dá)到這一精度也是勉為其難。這種回?fù)p會(huì)導(dǎo)致VNA指示的插入損耗大于實(shí)際存在的插入損耗,因?yàn)閂NA“認(rèn)為”它向DUT發(fā)送了比實(shí)際發(fā)送量更大的 功率。
隨著要求的插入損耗水平的降低,將有必要減少透射標(biāo)準(zhǔn)貢獻(xiàn)給校準(zhǔn)的回?fù)p量。而測(cè)量頻率越高,就越難以做到這一點(diǎn)。
要減少TRL設(shè)計(jì)的校準(zhǔn)標(biāo)準(zhǔn)的回?fù)p,有幾點(diǎn)需要特別注意。首先,傳輸線路設(shè)計(jì)非常重要,需要與PCB制造商密切協(xié)調(diào),確保使用正確的設(shè)計(jì)、材料和 工藝來(lái)實(shí)現(xiàn)所需的阻抗與頻率曲線。連接器件的選擇至關(guān)重要,必須能夠在相關(guān)范圍內(nèi)滿意地工作。選定連接器件后,還有必要確保連接器與PCB之間的結(jié)點(diǎn)設(shè)計(jì)良好,如若不然,它可能會(huì)破壞同軸電纜與PCB傳輸線路之間所需的50 Ω阻抗,導(dǎo)致系統(tǒng)回?fù)p增大。許多連接器制造商都會(huì)提供高頻連接器的正確布局布線圖紙,以及預(yù)設(shè)計(jì)的傳輸線路設(shè)計(jì)和PCB堆疊。找到一家能按此設(shè)計(jì)生產(chǎn)的 PCB制造商可以大大簡(jiǎn)化PCB設(shè)計(jì)工作。
其次需要考慮PCB的裝配連接器與PCB傳輸線路之間的結(jié)點(diǎn)至關(guān)重要,因此連接器的焊接會(huì)對(duì)過(guò)渡產(chǎn)生重大影響。連接不良或未對(duì)齊的連接器會(huì)破壞電感和電容之間的微妙平衡,從而影響結(jié)點(diǎn)的阻抗。圖5是一個(gè)焊接不良的連接器結(jié)點(diǎn)示例。
圖5. 連接不良的SMA
如果設(shè)計(jì)程序沒(méi)有考慮阻焊膜涂層的介電常數(shù),則它也可能會(huì)對(duì)傳輸線路的阻抗產(chǎn)生不利影響。在低頻PCB中,這不是一個(gè)大問(wèn)題,但隨著頻率提高,阻焊膜可能會(huì)帶來(lái)麻煩。
為了確保透射總線的回?fù)p是可接受的,有必要利用VNA測(cè)量回?fù)p。因?yàn)橄到y(tǒng)的參考平面是從連接器到連接器,所以SOLT校準(zhǔn)應(yīng)當(dāng)足以測(cè)量透射走線。一旦確定透射走線的回?fù)p性能,就可以通過(guò)在走線上執(zhí)行TDR來(lái)監(jiān)視缺陷。TDR會(huì)顯示系統(tǒng)與目標(biāo)阻抗偏差最大的區(qū)域。
在 TDR曲線上,應(yīng)當(dāng)可以標(biāo)出系統(tǒng)中對(duì)偏差貢獻(xiàn)最大的具體部分。圖6所示為一條傳輸線路走線及其對(duì)應(yīng)的TDR曲線??梢栽赥DR曲線上定位某些部分的阻抗, 從而明白哪些部分造成了最大的回?fù)p。從圖中可以看出,SMA與傳輸線路之間的結(jié)點(diǎn)偏離50 Ω,并且傳輸線路本身的阻抗也不是很接近50 Ω。為了改善該P(yáng)CB的性能,需要采取上面所說(shuō)的一些措施。
圖6. PCB與TDR曲線
使用S參數(shù)
在某一頻率范圍內(nèi)表征一個(gè)DUT時(shí),S參數(shù)可以提供許多好處。除了顯示某一頻率時(shí)的增益、損耗或阻抗匹配以外,還可以用Y參數(shù)(導(dǎo)納參數(shù))等其它形式替換S 參數(shù),以便計(jì)算電容等物理參數(shù)。Y參數(shù)與S參數(shù)的唯一區(qū)別在于:前者是在目標(biāo)引腳短路(0 Ω)情況下導(dǎo)出的(公式5到8),而后者則是在匹配50 Ω端接阻抗情況下導(dǎo)出的??梢詫?duì)Y參數(shù)進(jìn)行實(shí)際測(cè)量,但它比S參數(shù)更難以記錄,因?yàn)樵趯掝l率范圍內(nèi)造成真正的短路非常困難。由于寬帶50 Ω匹配更容易做到,因此更好的方法是記錄S參數(shù),然后將S參數(shù)轉(zhuǎn)換成Y參數(shù)。大部分現(xiàn)代RF軟件包都可以實(shí)現(xiàn)這一點(diǎn)。
計(jì)算物理參數(shù)
下 面舉一個(gè)利用S參數(shù)來(lái)計(jì)算目標(biāo)頻率范圍內(nèi)電容的例子,考慮圖1所示的RF繼電器。當(dāng)繼電器開(kāi)路(即, 斷開(kāi)),時(shí),為了計(jì)算繼電器到地的電容,首先必須將S參數(shù)記錄轉(zhuǎn)換為Y參數(shù),也就是將50 Ω環(huán)境下的數(shù)據(jù)轉(zhuǎn)換為短路端接情況下的數(shù)據(jù)。從繼電器的物理結(jié)構(gòu)可以明顯看出,當(dāng)輸出端口接地并且開(kāi)關(guān)斷開(kāi)時(shí),至地的電容可以通過(guò)檢查Y11參數(shù)而得知,Y11 衡量送回信號(hào)源的功率量。當(dāng)開(kāi)關(guān)斷開(kāi)時(shí),所有功率都應(yīng)被反射回信號(hào)源,但實(shí)際上,某些功率會(huì)到達(dá)接地(Y參數(shù)定義的要求)的輸出端口,該功率通過(guò)電容傳輸?shù)降?。因此,將Y11參數(shù)的虛部除以2πf便得到目標(biāo)頻率時(shí)RF繼電器到地的電容。
若要計(jì)算RF繼電器的電感,可以使用類(lèi)似的方法,但此時(shí)需要用Z(阻抗)參數(shù)代替Y參數(shù)。Z參數(shù)與S參數(shù)和Y參數(shù)相似,不過(guò)它不是使用阻抗匹配或短路,而是使用開(kāi)路來(lái)定義端接。略加考慮便可將此方法應(yīng)用于所有器件,以計(jì)算多種不同的物理參數(shù)。
匹配網(wǎng)絡(luò)
S參數(shù)的另一個(gè)應(yīng)用是匹配網(wǎng)絡(luò)的設(shè)計(jì)。許多應(yīng)用要求阻抗匹配以確保在某一頻率實(shí)現(xiàn)最佳的功率傳輸。利用S參數(shù),可以測(cè)量器件的輸入和輸出阻抗,然后可以在史密斯圖上顯示S參數(shù),并設(shè)計(jì)適當(dāng)?shù)钠ヅ渚W(wǎng)絡(luò)。
為客戶提供模型
如上所述,由于S參數(shù)廣泛適用,因此可以利用S參數(shù)文件向用戶提供線性電路的輸入輸出信息,并完整描述寬頻率范圍內(nèi)器件的特性,而無(wú)需披露復(fù)雜或者專(zhuān)有的設(shè)計(jì)。客戶可以按照與上面所述類(lèi)似的方法,利用S參數(shù)在其系統(tǒng)中構(gòu)建器件模型。
結(jié)束語(yǔ)
S參數(shù)是創(chuàng)建和驗(yàn)證寬帶寬的高頻模型的有用工具。一旦記錄下來(lái),便可以利用S參數(shù)計(jì)算許多其它電路特性,以及創(chuàng)建匹配網(wǎng)絡(luò)。然而,設(shè)計(jì)測(cè)量系統(tǒng)時(shí),必須考慮一些必要的注意事項(xiàng),其中最重要的是校準(zhǔn)方法的選擇和PCB設(shè)計(jì)。通過(guò)采取本文所述的措施,可以避免某些潛在的問(wèn)題。
透射電鏡相關(guān)文章:透射電鏡原理
評(píng)論