基于SoC FPGA進行工業(yè)設計及電機控制
● 磁場定向控制(FOC)。FOC是通過獨立地確定和控制轉矩和磁化電流分量來為電機提供最優(yōu)電流的算法。在永磁同步電機(PMSM)中,轉子已經(jīng)磁化。因此,為電機提供的電流只用于轉矩。FOC是計算密集型算法,但是美高森美電機控制參考設計已經(jīng)針對器件資源的最優(yōu)使用而構建。FOC算法包括Clarke、Park、逆Clarke和逆Park變換。
本文引用地址:http://m.butianyuan.cn/article/264457.htm● 角度估計。FOC的一個輸入是轉子角度。精確確定轉子角度對于確保低功耗是必不可少的。增添確定位置和速度的物理傳感器會增加系統(tǒng)的成本并降低可靠性。無傳感器算法有助于消除傳感器,但是增加了計算復雜性。美高森美針對無傳感器控制提供了兩個角度計算算法IP模塊-一個基于Luenberger觀測器,另一個基于直接反電動勢計算。該公司還提供基于霍爾傳感器和編碼器的單獨參考設計。
● PLL.PLL用于同步信號,在多個應用中有用,例如逆變器的角度估計和電網(wǎng)同步。
● 速率限制器。速率限制器模塊可以實現(xiàn)系統(tǒng)變量或輸入的平滑改變。例如,在電機控制系統(tǒng)中,如果電機所需的速度突然改變,系統(tǒng)可能變得不穩(wěn)定。為了避免此類情形,速率限制器模塊用于從初始速度轉變到所需的速度。速率限制器模塊可以進行配置以控制改變的速率。
● 空間矢量調(diào)制??臻g矢量調(diào)制模塊改善了直流總線利用率,并消除了晶體管開關的短脈沖。因為晶體管開啟/關斷時間比脈沖持續(xù)時間長,短脈沖會導致不正確的開關行為。
● 三相PWM生成。在所有計算的最后,可以得到三相電機電壓。這些電壓用于生成逆變器中晶體管的開關信號。PWM模塊為六個(三個高側和三個低側)晶體管產(chǎn)生開關信號,并且具有死區(qū)時間和延遲時間插入等先進特性??删幊痰乃绤^(qū)時間插入特性有助于避免逆變器引腳上的災難性短路情況??删幊痰难舆t時間插入特性使ADC測量與PWM信號生成能夠同步。該模塊可以配置成與僅由N-MOSFET組成的逆變器或同時包括N-MOSFET和P-MOSFET的逆變器一起工作。
(2)在SoC中調(diào)試FPGA設計。通常,在微控制器上調(diào)試設計比在FPGA上進行調(diào)試相對簡單一些。在SoC中,可以利用FPGA的高性能,同時保持在微控制器中更快速調(diào)試的優(yōu)勢。美高森美SmartFusion2 SoC FPGA中的微控制器子系統(tǒng)和FPGA架構可以通過AMBA APB或AXI總線彼此進行通信。這樣可以把測試數(shù)據(jù)注入FPGA架構中,或者從FPGA架構中記錄調(diào)試數(shù)據(jù),從而幫助實現(xiàn)運行時間的內(nèi)部數(shù)據(jù)可視化,用于實時調(diào)試。固件代碼可以單步運行,在代碼中可以設置斷點來分析FPGA寄存器數(shù)據(jù)。
基于SmartFusion2 SoC FPGA的多軸電機控制解決方案通過USB連接至主機PC,并與圖形用戶界面(GUI)通信,進行啟動/停止電機,設置電機速度值和其他系統(tǒng)參數(shù),描繪多達四個系統(tǒng)變量,例如電機速度、電機電流和轉子角度(圖4)。
?
圖4:GUI的屏幕截圖-繪制內(nèi)部參數(shù):轉子角度(綠色)、Valpha(紅色)、Vbeta(黑色)、電機速度(藍色)。
(3)生態(tài)系統(tǒng)。美高森美提供一組豐富的IP庫,包括前面討論過的數(shù)種電機控制功能。這些模塊可以輕易定制,并可以在美高森美器件中移植。使用Libero SoC軟件的Smart Design工具,這些模塊可以采用圖形方式配置和連接在一起。借助于這些IP模塊,設計人員能夠顯著減少在FPGA中實現(xiàn)電機控制算法所需的時間。
這些IP模塊已在以高達30,000r/min轉速和200kHz開關頻率運行的電機上進行了測試。
工業(yè)通信協(xié)議
工業(yè)網(wǎng)絡的發(fā)展趨勢是通過使用更快的網(wǎng)絡通信替代點至點通信。實現(xiàn)此類高速通信需要支持更高的帶寬,這對于同時處理電機控制算法的微控制器或DSP來說并不容易。在大多數(shù)情況下,會使用一個附加的微控制器或FPGA來處理與每個電機控制器的通信。通常使用的基于以太網(wǎng)的協(xié)議有PROFINET、EtherNet/IP和EtherCAT標準,這些標準仍然在演進。其他的協(xié)議包括了CAN和Modbus.在這種情況下使用SoC的優(yōu)勢,是在單一FPGA平臺上支持多種工業(yè)以太網(wǎng)協(xié)議標準。
根據(jù)終端系統(tǒng)目標,可以通過重用IP和協(xié)議棧(用于通信)來優(yōu)化系統(tǒng)的成本,或者通過仔細地在硬件(FPGA)和軟件(ARMCortex-M3子系統(tǒng))中劃分功能來優(yōu)化性能。
美高森美的SmartFusion2 FPGA具有內(nèi)置CAN、高速USB和千兆以太網(wǎng)模塊作為微控制器子系統(tǒng)的一部分。高速SERDES模塊用于實現(xiàn)涉及串行數(shù)據(jù)傳送的協(xié)議。
安全性
SmartFusion2 SoC FPGA器件具有數(shù)項設計和數(shù)據(jù)安全特性。DPA認證反篡改保護和加密特性等設計安全特性能夠幫助保護客戶的知識產(chǎn)權。SoC FPGA器件還包括數(shù)據(jù)安全特性,例如ECC硬件加速器、AES-128/256和SHA-256服務。對于數(shù)據(jù)安全性,可以使用EnforcIT IP Suite和CodeSEAL軟件安全構件,EnforcIT IP包括一套可定制內(nèi)核(作為網(wǎng)表),有效地將安全層移到硬件中。CodeSEAL將對策注入到固件中,可以獨立地使用,或者用作EnforcIT的提升。
實現(xiàn)協(xié)議的靈活性可讓設計人員使用多個安全層來認證從中央監(jiān)控控制器進入的信息。
可靠性
在多個市場中安全標準的增長推動了高可靠性的需求,SmartFusion2經(jīng)設計滿足高可用性、安全關鍵型和任務關鍵型系統(tǒng)的需求,以下是SmartFusion2 SoC FPGA提供的某些可靠性特性。
(1)單粒子翻轉(SEU)免疫零FIT率配置。高可靠性運作需要SEU免疫零FIT率FPGA配置,SmartFusion2架構具有不受α或中子輻射的免疫能力,因為它使用閃存來配置路由矩陣和邏輯模塊中使用的晶體管?;赟RAM的FPGA在海平面上的FIT(時間失效)率可能為1k~4k,在高于海平面5,000英尺的位置會高得多。高可靠性應用可接受的FIT率低于20,這使得SmartFusion2最適合這些應用。
(2)EDAC保護。SmartFusion2器件具有錯誤檢測與校正(EDAC)控制器,可防止在微控制器子系統(tǒng)(MSS)存儲器中發(fā)生的單粒子翻轉錯誤。
(3)無外部配置器件。在具有大量FPGA的復雜系統(tǒng)中,使用外部配置器件會降低可靠性。在上電時,F(xiàn)PGA需花費時間來進行配置,這在使用多個FPGA器件的應用中帶來了設計復雜性。SmartFusion2 SoC FPGA在器件內(nèi)部包含了配置存儲器,它提供了在器件一上電時就開啟的附加優(yōu)勢。
(4)軍用溫度級器件。SmartFusion2 SoC FPGA器件針對軍用溫度條件進行了全面測試。軍用級器件具有10k和150k邏輯單元,并具有允許訪問密碼加速器的安全特性和數(shù)據(jù)安全特性。
總結
美高森美SmartFusion2 SoC FPGA使用經(jīng)過高度優(yōu)化的電機控制IP模塊和經(jīng)過驗證的參考設計,提供了數(shù)種降低工業(yè)設計TCO的特性。從微控制器遷移的客戶將能夠重用某些舊代碼,而FPGA設計人員將能夠利用FPGA架構和ARM Cortex-M3子系統(tǒng)來創(chuàng)建一個高效的架構,允許電機控制模塊和通信模塊同時駐留在單一器件中。ARM Cortex-M3微控制器子系統(tǒng)的存在,可以實現(xiàn)靈活的設計和智能分區(qū),而針對性能和成本做優(yōu)化。微控制器子系統(tǒng)還可以在運行時間中注入和記錄數(shù)據(jù),加速調(diào)試FPGA設計。SmartFusion2平臺還提供了實現(xiàn)工業(yè)通信協(xié)議的廣泛選項。它同時提供用于設計和數(shù)據(jù)安全的多項安全特性,還提供了滿足高可靠性需求的特性。SmartFusion2系列器件備有強大的生態(tài)系統(tǒng)支持,能夠幫助客戶以最低TCO來開發(fā)工業(yè)解決方案。
評論