DC/DC變換器技術(shù)現(xiàn)狀及未來
——
從八十年代末起,工程師們?yōu)榱丝s小DC/DC變換器的體積,提高功率密度,首先從大幅度提高開關(guān)電源的工作頻率做起,但這種努力結(jié)果是大幅度縮小了體積,卻降低了效率。發(fā)熱增多,體積縮小,難過高溫關(guān)。因為當(dāng)時MOSFET的開關(guān)速度還不夠快,大幅提高頻率使MOSFET的開關(guān)損耗驅(qū)動損耗大幅度增加。工程師們開始研究各種避開開關(guān)損耗的軟開關(guān)技術(shù)。雖然技術(shù)模式百花齊放,然而從工程實用角度僅有兩項是開
發(fā)成功且一直延續(xù)到現(xiàn)在。一項是VICOR公司的有源箝位ZVS軟開關(guān)技術(shù);另一項就是九十年代初誕生的全橋移相ZVS軟開關(guān)技術(shù)。
有源箝位技術(shù)歷經(jīng)三代,且都申報了專利。第一代系美國VICOR公司的有源箝位ZVS技術(shù),其專利已經(jīng)于2002年2月到期。VICOR公司利用該技術(shù),配合磁元件,將DC/DC的工作頻率提高到1MHZ,功率密度接近200W/in3,然而其轉(zhuǎn)換效率卻始終沒有超過90%,主要原因在于MOSFET的損耗不僅有開關(guān)損耗,還有導(dǎo)通損耗和驅(qū)動損耗。特別是驅(qū)動損耗隨工作頻率的上升也大幅度增加,而且因1MHZ頻率之下不易采用同步整流技術(shù),其效率是無法再提高的。因此,其轉(zhuǎn)換效率始終沒有突破90%大關(guān)。
為了降低第一代有源箝位技術(shù)的成本,IPD公司申報了第二代有源箝位技術(shù)專利。它采用P溝MOSFET在變壓器二次側(cè)用于forward電路拓樸的有源箝位。這使產(chǎn)品成本減低很多。但這種方法形成的MOSFET的零電壓開關(guān)(ZVS)邊界條件較窄,在全工作條件范圍內(nèi)效率的提升不如第一代有源箝位技術(shù),而且PMOS工作頻率也不理想。
為了讓磁能在磁芯復(fù)位時不白白消耗掉,一位美籍華人工程師于2001年申請了第三代有源箝位技術(shù)專利,并獲準(zhǔn)。其特點是在第二代有源箝位的基礎(chǔ)上將磁芯復(fù)位時釋放出的能量轉(zhuǎn)送至負(fù)載。所以實現(xiàn)了更高的轉(zhuǎn)換效率。它共有三個電路方案:其中一個方案可以采用N溝MOSFET。因而工作頻率較高,采用該技術(shù)可以將ZVS軟開關(guān)、同步整流技術(shù)、磁能轉(zhuǎn)換都結(jié)合在一起,因而它實現(xiàn)了高達(dá)92%的效率及250W/in3以上的功率密度。(即四分之一磚DC/DC做到250W功率輸出及92%以上的轉(zhuǎn)換效率)
我們給出三代產(chǎn)品的等效電路,讀者可從其細(xì)節(jié)品味各自的特色。有關(guān)有源箝位技術(shù)近年論文論述頗多,此處不多贅述。
全橋移相ZVS軟開關(guān)技術(shù),從90年代中期風(fēng)靡大功率及中功率開關(guān)電源領(lǐng)域。該電路拓樸及控制技術(shù)在MOSFET的開關(guān)速度還不太理想時,對DC/DC變換器效率的提升起了很大作用。但是工程師們?yōu)榇烁冻龅拇鷥r也不小。第一個代價是要增加一個諧振電感。它的體積比主變壓器小不了多少(約1/2左右),它也存在損耗,此損耗比輸出濾波電感損耗也小不了太多。第二個代價是丟失了8~10%的占空比,這種占空比的丟失將造成二次側(cè)的整流損耗。所以弄得不好,反而有得不償失的感覺。第三,諧振元件的參數(shù)需經(jīng)過調(diào)試,能適應(yīng)工業(yè)生產(chǎn)用的準(zhǔn)確值的選定是要花費較多的時間,試驗成本較高。此外,因同步整流給DC/DC效率的提高帶來實惠頗多,而全橋移相對二次側(cè)同步整流的控制效果并不十分理想。例如:第一代PWM ZVS全橋移相控制器,UC3875及UCC3895只控制初級側(cè)。若要提供準(zhǔn)確的控制同步整流的信號需另加邏輯電路。第二代全橋移相PWM控制器如LTC1922-1、LTC3722-1/-2,雖然增加了對二次側(cè)同步整流的控制信號,在做好ZVS軟開關(guān)的同時做好二次側(cè)的同步整流。但仍舊不能十分有效地控制好二次側(cè)的ZVS ZCS同步整流,而這是提高DC/DC變換器效率最有效的措施。UCC3722-1/-2的另一個重大改進(jìn)是減小諧振電感的感量,這不僅縮小了諧振電感的體積,而且降低了損耗,占空比的丟失也減小了許多.這里我們給出LTC3722加上同步整流的控制電路,由業(yè)界工程師們自己去分析對照。
在DC/DC業(yè)界,應(yīng)該說,軟開關(guān)技術(shù)的開發(fā)、試驗、直到用于工程實踐,費力不小,但收效卻不是太大?;ㄔ谶@方面的精力和資金還真不如半導(dǎo)體業(yè)界對MOSFET技術(shù)的改進(jìn)。經(jīng)過幾代MOSFET設(shè)計工業(yè)技術(shù)的進(jìn)步,從第一代到第八代。光刻工藝從5μM進(jìn)步到0.5μM。完美晶格的外延層使我們將材料所選擇的電阻率大幅下降。加上進(jìn)一步減薄的晶片。優(yōu)秀的芯片粘結(jié)焊接技術(shù),使當(dāng)今的MOSFET (例如80V40A)導(dǎo)通電阻降至5mΩ以下,開關(guān)時間已小于20ns,柵電荷僅20nc,而且是在邏輯電平下驅(qū)動即可。在這樣的條件下,同步整流技術(shù)獲得了極好的效果,幾乎使DC/DC的效率提高了將近十個百分點。效率指標(biāo)已經(jīng)普遍進(jìn)入了>90%的范圍。
目前,自偏置同步整流已經(jīng)普遍用于5V以下的低壓小功率輸出。自偏置同步整流用法簡單易行,選擇好MOSFET即告成功,此處不多述。
而對于12V以上至20V左右的同步整流則多采用控制驅(qū)動IC,這樣可以收到較好的效果。ST公司的STSR2和STSR3可以很好地用于反激變換電路及正激變換電路。我們給出其參考電路。線性技術(shù)公司的LTC3900和LTC3901則是去年才推出的更優(yōu)秀的同步整流控制IC.采用IC驅(qū)動的同步整流電路中,應(yīng)該說最好的還是業(yè)界于2002年才正式使用的ZVS,ZCS同步整流電路,它將DC/DC轉(zhuǎn)換器的效率帶上了95%這一歷史性臺階。
ZVS,ZCS同步整流只適用初級側(cè)為對稱型電路拓樸,磁芯可以雙向工作的場合。即推挽、半橋以及全橋硬開關(guān)的電路。二次側(cè)輸出電壓24V以下,輸出電流較大的場合,這時可以獲得最佳的效果。我們知道,對于傳輸同樣功率高壓小電流硬開關(guān)的損耗要比低壓大電流硬開關(guān)時的損耗低很多。我們利用這種性能將PWM的輸出信號經(jīng)過變壓器或高速光耦傳輸至二次側(cè),適當(dāng)處理其脈寬后,再去驅(qū)動同步整流的MOSFET。讓同步整流的MOSFET在其源漏之間沒有電壓,不流過電流時開啟及關(guān)斷。只要此時同步整流的MOSFET的導(dǎo)通電阻足夠小,柵驅(qū)動電荷足夠小,就能大幅度地提升轉(zhuǎn)換效率。最高的95%的轉(zhuǎn)換效率即是這樣獲得的,業(yè)界將其稱為CoolSet,即冷裝置,不再需要散熱器和風(fēng)扇了。
這種電路拓樸的輸出電壓在12V、15V輸出時效率最高,電壓降低或升高,效率隨之下降。輸出電壓超過28V時,將與肖特基二極管整流的效果相當(dāng)。輸出電壓低于5V時采用倍流整流會使變壓器利用更充分,轉(zhuǎn)換效率也會更高。
在ZVS及ZCS同步整流技術(shù)應(yīng)用于工程獲得成功后,人們在不對稱電路拓樸中也在進(jìn)行軟開關(guān)同步整流控制的試驗。例如已經(jīng)有了有源箱位正激電路的同步整流驅(qū)動(NCP1560),雙晶體管正激電路的同步整流驅(qū)動(LTC1681及LTC1698)但都未取得如對稱型電路拓樸的ZVS,ZCS同步整流的優(yōu)良效果。
近來,TI的工程師采用予撿測同步整流MOSFET開關(guān)狀態(tài),然后用數(shù)字技術(shù)調(diào)整MOSFET開關(guān)時間的方法突破性的做出ZVS的同步整流,從而解決了非對稱電路的軟開關(guān)同步整流,詳情見專題論述。
近年來,復(fù)合電路拓樸也迅速發(fā)展起來,這種電路拓樸的集中目標(biāo)都在于如何讓同步整流部分的效率做到最佳狀態(tài)。當(dāng)初級電壓變化一倍時,二次側(cè)的占空比會相應(yīng)縮小一半。而MOSFET的源漏電壓卻升高一倍。這意味著我們必須選擇更高耐壓的同步整流用MOSFET。我們知道,從半導(dǎo)體技術(shù)來分析MOSFET這種器件,當(dāng)其耐壓高一倍時,其導(dǎo)通電阻會擴(kuò)大兩倍。這對于用做同步整流十分不利,于是我們設(shè)想可否將二次側(cè)同步整流的MOSFET的工作占空比定在48%~50%。這樣我們選擇比輸出電壓高2.5倍的MOSFET就可以了。例如:3.3V輸出電壓時同步整流MOSFET的耐壓選12V檔就可以了。而占空比變化大的我們就得選20V甚至30V的MOSFET,大家對比一下,12V的MOSFET會比20V的MOSFET的導(dǎo)通電阻小很多!正是基于這樣一種思維,美國業(yè)界工程師先后搞出了多個復(fù)合電路拓樸。
第一家申請專利的是美國SynQor公司,它的電路為Buck加上雙組交互forward組合技術(shù)。第一級是同步整流的Buck電路,將較高的輸入電壓(36~75V)降至某一中間值如26V??刂苾晒苷伎毡仍?0~60%工作。第二級為兩組交互forward電路。各工作在50%占空比,而且兩者輸出相位相差180º剛好互補。變壓器僅為隔離使用,其磁密和電密都處在最佳狀態(tài)。Buck級只要輸出濾波電感,而forward級在整流后只要輸出濾波電容。如此情況下SynQor產(chǎn)品獲得了92%以上的轉(zhuǎn)換效率。下面給出其電路,其控制IC就是我們熟知的UCC3843。它利用一顆IC巧妙地控制了上述全部功能。
第二家申請專利的是美國國家半導(dǎo)體公司,它的電路為Buck加上一組對稱拓樸(推挽、半橋、全橋)。第一級與SynQor公司相同,而第二級則為對稱型電路拓樸。這樣就可方便地實現(xiàn)ZVS,ZCS同步整流,它的同步整流不僅是ZVS,ZCS軟開關(guān)的,而且是最大占空比條件下的同步整流。如此情況下,它獲得了94%的轉(zhuǎn)換效率,下面給出其電路,見圖:限于兩級交聯(lián)其效率畢竟為兩級的乘積,因此這種方式的最高效率還是受到限制。
國家半導(dǎo)體公司給出的控制IC是當(dāng)今最新穎獨特的。首先它無需起動電路??芍苯咏?00V以下高壓。其次它驅(qū)動Buck電路的電平位移電路也做在IC內(nèi)部。然后還同步地給出第二級的雙路輸出驅(qū)動??芍苯域?qū)動推挽電路,或加上驅(qū)動器IC驅(qū)動半橋或全橋電路,二次側(cè)反饋的光耦可直接接至IC。此IC即今年剛問世的LM5041。
以上兩種電路拓樸由于二次占空比不變還很適合多路輸出。復(fù)合電路拓樸中還有一個新的發(fā)明就是推挽電路二次側(cè)同步整流之后再加上Buck電路以實現(xiàn)多輸出。采用一顆UCC3895再加上幾個門電路形成了一個革命性的變革組合。其電路如下。這是一個很奇妙的思維及組合,其推挽及同步整流也都是處在最大占空比之下工作的,但電壓卻在變化著。
在開關(guān)電源中普遍應(yīng)用高頻鐵氧體磁芯,作為變壓器和
電感,由于鐵氧體固有的磁滯特性,使得我們在設(shè)計所有各類電路拓樸時都不得不面對這個問題。在此之前絕大多數(shù)電路的做法都是用R、C、D網(wǎng)絡(luò)將該部分磁能消耗掉,對變換器效率有幾個百分點的影響。由于還有比它損耗比例更大的部位,所以注意力并沒有放在此處。然而到了轉(zhuǎn)換效率升至90%以上時,這種做法就絕對不可以了。從現(xiàn)在DC/DC工程化的產(chǎn)品來看,由于增加半導(dǎo)體器材(如MOSET、驅(qū)動IC等)是易如反掌的事。因此多數(shù)電路拓樸選用的是全橋電路拓樸及雙晶體管正激電路。這兩個電路是能使磁芯自動復(fù)位的最佳拓樸。對全橋電路與四個MOSFET并接上四個肖特基二極管即可,當(dāng)對角線MOSFET同時關(guān)斷時,變壓器初級繞組勵磁電感中的能量可自動地通過另兩個二極管回饋至供電電源。如果工作頻率不高,或選用了具快恢復(fù)性能體二極管的MOSFET,就可以省掉這四支肖特基二極管。這很適合100W以上的大功率DC/DC。而對于100W以下的DC/DC則多選雙晶體管正激電路。它的復(fù)位原理已人盡皆知,唯一的不足就是最大只有50%的占空比。對小功率的forward電路近年來開發(fā)出一個諧振式自動復(fù)位電路。用了幾個無源元件就能基本無損耗地將磁芯復(fù)位,其不足點也是最大占空比僅有50%,此外就是主功率MOSFET的耐壓要提升約30%。
目前,美國幾家高級DC/DC制造商已經(jīng)在高功率密度的DC/DC中使用了小型微處理器的技術(shù)。首先它可以取代很多模擬電路,減少了模擬元件的數(shù)量,它可以取代窗口比較器 、檢測器、鎖存器等完成電源的起動、過壓保護(hù)、欠壓鎖定、過流保護(hù)、短路保護(hù)及過熱保護(hù)等功能。由于這些功能都是依靠改變在微控制器上運行的微程序。所以技術(shù)容易保密。此外,改變微控制器的微程序還可以適應(yīng)同一印板生產(chǎn)多品種DC/DC的要求,簡化了器材準(zhǔn)備、生產(chǎn)管理等的復(fù)雜工作。由于它是數(shù)字化管理,它的保護(hù)功能及控制功能比采用模擬電路要精密得多,有了它還可以解決多個模塊并聯(lián)工作的排序和均流問題。
第二代微控制器控制的DC/DC還沒有將典型的開關(guān)電源進(jìn)行全面的數(shù)字閉環(huán)控制,但是已經(jīng)沒有PWM IC出現(xiàn)在電路中,一個小型MCU參與DC/DC的整個閉環(huán)控制。但PWM部分仍是模擬控制,現(xiàn)在,采用DSP數(shù)字信號處理器參與脈寬調(diào)制,最大、最小占空比控制、頻率設(shè)置、降頻升頻控制、輸出電壓的調(diào)節(jié)等工作,以及全部保護(hù)功能的DC/DC變換器已經(jīng)問世。這就是使用TI公司的TSM320L2810控制的開關(guān)電源,是全數(shù)字化的電源,這時DC/DC的數(shù)字化進(jìn)程就真正地實現(xiàn)了。好在半導(dǎo)體技術(shù)的進(jìn)步能很大幅度地降低芯片成本,因此,電源技術(shù)的數(shù)字化革命應(yīng)該說號角已經(jīng)吹響。該讓我們向在模擬領(lǐng)域進(jìn)行電源技術(shù)攀登的工程師們開始敲起數(shù)字化的進(jìn)行曲了!使用DSP控制的數(shù)字電源我們另文介紹。
總結(jié)上述調(diào)研我們可以看到,半導(dǎo)體技術(shù)進(jìn)步是DC/DC技術(shù)變化的強大動力。
?。?) MOSFET的技術(shù)進(jìn)步給DC/DC模塊技術(shù)帶來的巨大變化,同步整流技術(shù)的巨大進(jìn)步。
?。?) Schottky技術(shù)的進(jìn)步。
(3) 控制及驅(qū)動IC的進(jìn)步。
a. 高壓直接起動
b. 高壓電平位移驅(qū)動取代變壓器驅(qū)動
c. ZVS,ZCS驅(qū)動器貢獻(xiàn)給同步整流最佳效果
d. 光耦反饋直接接口
PWM IC經(jīng)歷了電壓型=>電流型=>電壓型的轉(zhuǎn)換,又經(jīng)歷了硬開關(guān)=>軟開關(guān)=>硬開關(guān)的否定之否定變化。掌握優(yōu)秀控制IC是制作優(yōu)秀DC/DC的前提和關(guān)鍵。
(4) 微控制器及DSP進(jìn)入DC/DC是技術(shù)發(fā)展的必由之路。
?。?) 磁芯技術(shù)的突破是下一代DC/DC技術(shù)進(jìn)步的關(guān)鍵,也是巨大難題。
對非隔離DC/DC的討論在本文中從略(另敘)。
對AC/DC的降頻、頻率抖動、無載損耗控制、高壓起動等以及PFC的討論在本文中也從略。
光耦相關(guān)文章:光耦原理
電路相關(guān)文章:電路分析基礎(chǔ)
dc相關(guān)文章:dc是什么
pwm相關(guān)文章:pwm是什么
晶體管相關(guān)文章:晶體管工作原理
電荷放大器相關(guān)文章:電荷放大器原理 晶體管相關(guān)文章:晶體管原理 脈寬調(diào)制相關(guān)文章:脈寬調(diào)制原理
評論