新聞中心

EEPW首頁 > 嵌入式系統(tǒng) > 用FPGA實(shí)現(xiàn)FFT算法

用FPGA實(shí)現(xiàn)FFT算法

——
作者: 時(shí)間:2008-01-11 來源:電子產(chǎn)品世界 收藏

引言

  DFT(Discrete Fourier Transformation)是數(shù)字信號(hào)分析與處理如圖形、語音及圖像等領(lǐng)域的重要變換工具,直接計(jì)算DFT的計(jì)算量與變換區(qū)間長(zhǎng)度N的平方成正比。當(dāng)N較大時(shí),因計(jì)算量太大,直接用DFT算法進(jìn)行譜分析和信號(hào)的實(shí)時(shí)處理是不切實(shí)際的??焖俑盗⑷~變換(Fast Fourier Transformation,簡(jiǎn)稱FFT)使DFT運(yùn)算效率提高1~2個(gè)數(shù)量級(jí)。其原因是當(dāng)N較大時(shí),對(duì)DFT進(jìn)行了基4和基2分解運(yùn)算。FFT算法除了必需的數(shù)據(jù)存儲(chǔ)器ram和旋轉(zhuǎn)因子rom外,仍需較復(fù)雜的運(yùn)算和控制電路單元,即使現(xiàn)在,實(shí)現(xiàn)長(zhǎng)點(diǎn)數(shù)的FFT仍然是很困難。本文提出的FFT實(shí)現(xiàn)算法是基于FPGA之上的,算法完成對(duì)一個(gè)序列的FFT計(jì)算,完全由脈沖觸發(fā),外部只輸入一脈沖頭和輸入數(shù)據(jù),便可以得到該脈沖頭作為起始標(biāo)志的N點(diǎn)FFT輸出結(jié)果。由于使用了雙ram,該算法是流型(Pipelined)的,可以連續(xù)計(jì)算N點(diǎn)復(fù)數(shù)輸入FFT,即輸入可以是分段N點(diǎn)連續(xù)復(fù)數(shù)數(shù)據(jù)流。采用DIF(Decimation In Frequency)-FFT和DIT(Decimation In Time)-FFT對(duì)于算法本身來說是無關(guān)緊要的,因?yàn)閮煞N情況下只是存儲(chǔ)器的讀寫地址有所變動(dòng)而已,不影響算法的結(jié)構(gòu)和流程,也不會(huì)對(duì)算法復(fù)雜度有何影響。算法實(shí)現(xiàn)的可以是基2/4混合基FFT,也可以是純基4FFT和純基2FFT運(yùn)算。

傅立葉變換和逆變換

對(duì)于變換長(zhǎng)度為N的序列x(n)其傅立葉變換可以表示如下:

     式(1)


其中,W="exp"(-2π/N)。 當(dāng)點(diǎn)數(shù)N較大時(shí),必須對(duì)式(1)進(jìn)行基4/基2分解,以短點(diǎn)數(shù)實(shí)現(xiàn)長(zhǎng)點(diǎn)數(shù)的變換。而IDFT的實(shí)現(xiàn)在DFT的基礎(chǔ)上就顯得較為簡(jiǎn)單了:

                   式(2)


由式(2)可以看出,在FFT運(yùn)算模塊的基礎(chǔ)上,只需將輸入序列進(jìn)行取共軛后再進(jìn)行FFT運(yùn)算,輸出結(jié)果再取一次共軛便實(shí)現(xiàn)了對(duì)輸入序列的IDFT運(yùn)算,因子1/N對(duì)于不同的數(shù)據(jù)表示格式具體實(shí)現(xiàn)時(shí)的處理方式是不一樣的。IDFT在FFT的基礎(chǔ)上輸入和輸出均有一次共軛操作,但它們共用一個(gè)內(nèi)核,仍然是十分方便的。


基4和基2
基4和基2運(yùn)算流圖及信號(hào)之間的運(yùn)算關(guān)系如圖1所示:
(a)基4蝶形算法 (b)基2蝶形算法

  以基4為例,令A(yù)="r0"+j

fpga相關(guān)文章:fpga是什么




關(guān)鍵詞:

評(píng)論


相關(guān)推薦

技術(shù)專區(qū)

關(guān)閉