新聞中心

EEPW首頁 > EDA/PCB > 設計應用 > 幾種常用邏輯電平電路的特點及應用

幾種常用邏輯電平電路的特點及應用

作者: 時間:2008-03-18 來源: 收藏

  引 言

本文引用地址:http://m.butianyuan.cn/article/80235.htm

  在通用的電子器件設備中,TTL和CMOS電路的應用非常廣泛。但是面對現(xiàn)在系統(tǒng)日益復雜,傳輸?shù)臄?shù)據(jù)量越來越大,實時性要求越來越高,傳輸距離越來越長的發(fā)展趨勢,掌握高速數(shù)據(jù)傳輸?shù)?a class="contentlabel" href="http://m.butianyuan.cn/news/listbylabel/label/邏輯電平">邏輯電平知識和設計能力就顯得更加迫切了。

  1 幾種常用高速

  1.1LVDS電平

  LVDS(Low Voltage Differential Signal)即低電壓差分信號,LVDS接口又稱RS644總線接口,是20世紀90年代才出現(xiàn)的一種數(shù)據(jù)傳輸和接口技術。

  LVDS的典型工作原理如圖1所示。最基本的LVDS器件就是LVDS驅動器和接收器。LVDS的驅動器由驅動差分線對的電流源組成,電流通常為3.5 mA。LVDS接收器具有很高的輸入阻抗,因此驅動器輸出的大部分電流都流過100 Ω的匹配電阻,并在接收器的輸入端產(chǎn)生大約350 mV的電壓。當驅動器翻轉時,它改變流經(jīng)電阻的電流方向,因此產(chǎn)生有效的邏輯“1”和邏輯“0”狀態(tài)。

  

LVDS的典型工作原理

 

  LVDS技術在兩個標準中被定義:ANSI/TIA/EIA644 (1995年11月通過)和IEEE P1596.3 (1996年3月通過)。這兩個標準中都著重定義了LVDS的電特性,包括:

  ① 低擺幅(約為350 mV)。低電流驅動模式意味著可實現(xiàn)高速傳輸。ANSI/TIA/EIA644建議了655 Mb/s的最大速率和1.923 Gb/s的無失真通道上的理論極限速率。

  ② 低壓擺幅。恒流源電流驅動,把輸出電流限制到約為3.5 mA左右,使跳變期間的尖峰干擾最小,因而產(chǎn)生的功耗非常小。這允許集成電路密度的進一步提高,即提高了PCB板的效能,減少了成本。

 ?、?具有相對較慢的邊緣速率(dV/dt約為0.300 V/0.3 ns,即為1 V/ns),同時采用差分傳輸形式,使其信號噪聲和EMI都大為減少,同時也具有較強的抗干擾能力。

  所以,LVDS具有高速、超低功耗、低噪聲和低成本的優(yōu)良特性。

  LVDS的應用模式可以有四種形式:

 ?、?單向點對點(pointtopoint),這是典型的應用模式。

 ?、?雙向點對點(pointtopoint),能通過一對雙絞線實現(xiàn)雙向的半雙工通信??梢杂蓸藴实腖VDS的驅動器和接收器構成;但更好的辦法是采用總線LVDS驅動器,即BLVDS,這是為總線兩端都接負載而設計的。

 ?、?多分支形式(multidrop),即一個驅動器連接多個接收器。當有相同的數(shù)據(jù)要傳給多個負載時,可以采用這種應用形式。

 ?、?多點結構(multipoint)。此時多點總線支持多個驅動器,也可以采用BLVDS驅動器。它可以提供雙向的半雙工通信,但是在任一時刻,只能有一個驅動器工作。因而發(fā)送的優(yōu)先權和總線的仲裁協(xié)議都需要依據(jù)不同的應用場合,選用不同的軟件協(xié)議和硬件方案。

  為了支持LVDS的多點應用,即多分支結構和多點結構,2001年新推出的多點低壓差分信號(MLVDS)國際標準ANSI/TIA/EIA 8992001,規(guī)定了用于多分支結構和多點結構的MLVDS器件的標準,目前已有一些MLVDS器件面世。

  LVDS技術的應用領域也日漸普遍。在高速系統(tǒng)內部、系統(tǒng)背板互連和電纜傳輸應用中,驅動器、接收器、收發(fā)器、并串轉換器/串并轉換器以及其他LVDS器件的應用正日益廣泛。接口芯片供應商正推進LVDS作為下一代基礎設施的基本構造模塊,以支持手機基站、中心局交換設備以及網(wǎng)絡主機和計算機、工作站之間的互連。

  1.2ECL電平

  ECL(EmitterCoupLED LogIC)即射極耦合邏輯,是帶有射隨輸出結構的典型輸入輸出接口電路,如圖2所示。

  

ECL(EmitterCoupled Logic)即射極耦合邏輯,是帶有射隨輸出結構的典型輸入輸出接口電路

 

  ECL電路的最大特點是其基本門電路工作在非飽和狀態(tài),因此ECL又稱為非飽和性邏輯。也正因為如此,ECL電路的最大優(yōu)點是具有相當高的速度。這種電路的平均延遲時間可達幾個ns數(shù)量級甚至更少。傳統(tǒng)的ECL以VCC為零電壓,VEE為-5.2 V電源,VOH=VCC-0.9 V="-0".9 V,VOL=VCC-1.7 V="-1".7 V,所以ECL電路的邏輯擺幅較小(僅約0.8 V)。當電路從一種狀態(tài)過渡到另一種狀態(tài)時,對寄生電容的充放電時間將減少,這也是ECL電路具有高開關速度的重要原因。另外,ECL電路是由一個差分對管和一對射隨器組成的,所以輸入阻抗大,輸出阻抗小,驅動能力強,信號檢測能力高,差分輸出,抗共模干擾能力強;但是由于單元門的開關管對是輪流導通的,對整個電路來講沒有“截止”狀態(tài),所以電路的功耗較大。

  如果省掉ECL電路中的負電源,采用正電源的系統(tǒng)(+5 V),可將VCC接到正電源而VEE接到零點。這樣的電平通常被稱為PECL(Positive Emitter CoupLED LogIC)。如果采用+3.3 V供電,則稱為LVPECL。當然,此時高低電平的定義也是不同的。它的電路如圖3、4所示。其中,輸出射隨器工作在正電源范圍內,其電流始終存在。這樣有利于提高開關速度,而且標準的輸出負載是接50Ω至VCC-2 V的電平上。

  

PECL輸出結構

 

  在使用PECL 電路時要注意加電源去耦電路,以免受噪聲的干擾。輸出采用交流耦合還是直流耦合,對負載網(wǎng)絡的形式將會提出不同的需求。直流耦合的接口電路有兩種工作模式:其一,對應于近距離傳送的情況,采用發(fā)送端加到地偏置電阻,接收端加端接電阻模式;其二,對應于較遠距離傳送的情況,采用接收端通過電阻對提供截止電平VTT 和50 Ω的匹配負載的模式。以上都有標準的工作模式可供參考,不必贅述。對于交流耦合的接口電路,也有一種標準工作模式,即發(fā)送端加到地偏置電阻,耦合電容靠近發(fā)送端放置,接收端通過電阻對提供共模電平VBB 和50 Ω的匹配負載的模式。

  (P)ECL是高速領域內一種十分重要的邏輯電路,它的優(yōu)良特性使它廣泛應用于高速計算機、高速計數(shù)器、數(shù)字通信系統(tǒng)、雷達、測量儀器和頻率合成器等方面。

  1.3CML電平

  CML電平是所有高速數(shù)據(jù)接口中最簡單的一種。其輸入和輸出是匹配好的,減少了外圍器件,適合于更高頻段工作。它的輸出結構如圖5所示。

  

PECL輸入結構

 

  CML 接口典型的輸出電路是一個差分對形式。該差分對的集電極電阻為50 Ω,輸出信號的高低電平切換是靠共發(fā)射極差分對的開關控制的。差分對的發(fā)射極到地的恒流源典型值為16 mA。假定CML的輸出負載為一個50 Ω上拉電阻,則單端CML輸出信號的擺幅為VCC~VCC-0.4 V。在這種情況下,差分輸出信號擺幅為800 mV。信號擺幅較小,所以功耗很低,CML接口電平功耗低于ECL的1/2,而且它的差分信號接口和 ECL、LVDS電平具有類似的特點。

  CML到CML之間的連接分兩種情況:當收發(fā)兩端的器件使用相同的電源時,CML到CML可以采用直流耦合方式,不用加任何器件;當收發(fā)兩端器件采用不同電源時,一般要考慮交流耦合, 中間加耦合電容(注意這時選用的耦合電容要足夠大,以避免在較長連0 或連1 情況出現(xiàn)時,接收端差分電壓變小)。

  但它也有些不足,即由于自身驅動能力有限,CML更適于芯片間較短距離的連接,而且CML接口實現(xiàn)方式不同用戶間差異較大,所以現(xiàn)有器件提供CML接口的數(shù)目還不是非常多。

  2 各種之間的比較和互連轉化

  2.1各種邏輯電平之間的比較

  這幾種高速邏輯電平在目前都有應用,但它們在總線結構、功率消耗、傳輸速率、耦合方式等方面都各有特點。為了便于應用比較,現(xiàn)歸納以上三類電平各方面的特點,如表1所列。

  

三類電平的特點

 

  2.2各種邏輯電平之間的互連

  這三類電平在互連時,首先要考慮的就是它們的電平大小和電平擺幅各不一樣,必須使輸出電平經(jīng)過中間的電阻轉換網(wǎng)絡后落在輸入電平的有效范圍內。各種電平的擺幅比較如圖6所示。

  

各種電平的擺幅比較

 

  其次,電阻網(wǎng)絡要考慮到匹配問題。例如我們知道,當負載是50 Ω接到VCC-2 V 時,LVPECL 的輸出性能是最優(yōu)的,因此考慮的電阻網(wǎng)絡應該與最優(yōu)負載等效;LVDS 的輸入差分阻抗為100 Ω,或者每個單端到虛擬地為50 Ω,該阻抗不提供直流通路,這里意味著LVDS輸入交流阻抗與直流阻抗不等,電阻值的選取還必須根據(jù)直流或交流耦合的不同情況作不同的選取。另外,電阻網(wǎng)絡還必須與傳輸線匹配。

  另一個問題是電阻網(wǎng)絡需要在功耗和速度方面折中考慮:既允許電路在較高的速度下工作,又盡量不出現(xiàn)功耗過大。

  下面以圖7所示的LVPECL到LVDS的直流耦合連接為例,來說明以上所討論的原則。

  

LVPECL到LVDS的直流耦合連接

 

  傳輸線阻抗匹配原則:

  Z≈R1//(R2+R3)

  根據(jù)LVPCEL輸出最優(yōu)性能:

  

公式

 

  降低LVPECL擺幅以適應LVDS的輸入范圍:Gain=R3/(R2+R3)

  根據(jù)實際情況,選擇滿足以上約束條件的電阻值,例如當傳輸線特征阻抗為50 Ω時,可取R1=120 Ω,R2=58 Ω,R3=20 Ω即能完成互連。

  由于LVDS 通常用作并聯(lián)數(shù)據(jù)的傳輸,數(shù)據(jù)速率為155 Mbps、622 Mbps或1.25 Gbps;而CML 常用來做串行數(shù)據(jù)的傳輸,數(shù)據(jù)速率為2.5 Gbps或10 Gbps。一般情況下,在傳輸系統(tǒng)中沒有CML和LVDS 的互連問題。

  結語

  本文粗淺地討論了幾種目前應用較多的高速電平技術。復雜高速的通信系統(tǒng)背板,大屏幕平板顯示系統(tǒng),海量數(shù)據(jù)的實時傳輸?shù)鹊榷夹枰捎眯赂咚匐娖郊夹g。隨著社會的發(fā)展,新高速電平技術必將得到越來越廣泛的應用。



關鍵詞: 邏輯電平

評論


相關推薦

技術專區(qū)

關閉