基于雙環(huán)控制和重復控制的逆變器控制方案研究
摘要:研究了一種基于雙環(huán)控制和重復控制的逆變器控制技術(shù),該方案在電流環(huán)和瞬時電壓環(huán)之外附加了一個重復控制環(huán)。在實現(xiàn)輸出電壓解耦和擾動電流補償后,根據(jù)無差拍原理設計的雙環(huán)控制器使逆變器達到了很快的動態(tài)響應速度;位于外層的重復控制器則提高了穩(wěn)態(tài)精度。該方案在一臺基于DSPTMS320F240控制系統(tǒng)的PWM逆變器上得到驗證。 關(guān)鍵詞:逆變器;雙環(huán);無差拍;重復控制 0 引言 隨著閉環(huán)調(diào)節(jié)PWM逆變器在中小功率場合中的大量使用,對其輸出電壓波形的要求也越來越高。高質(zhì)量的輸出波形不僅要求穩(wěn)態(tài)精度高而且要求動態(tài)響應快。 傳統(tǒng)的單閉環(huán)系統(tǒng)無法充分利用系統(tǒng)的狀態(tài)信息,因此,將輸出反饋改為狀態(tài)反饋,在狀態(tài)空間上通過合理選擇反饋增益矩陣來改變逆變器一對太接近s域虛軸的極點,增加其阻尼,能達到較好的動態(tài)效果。單閉環(huán)在抵抗負載擾動方面與直流電機類似,只有當負載擾動的影響最終在輸出端表現(xiàn)出來以后,才能出現(xiàn)相應的誤差信號激勵調(diào)節(jié)器,增設一個電流環(huán)限制啟動電流和構(gòu)成電流隨動系統(tǒng)也可以大大加快抵御擾動的動態(tài)過程。瞬時值反饋采取提高系統(tǒng)動態(tài)響應的方法消除跟蹤誤差,但靜態(tài)特性不佳,而基于周期的控制是通過對誤差的周期性補償,實現(xiàn)穩(wěn)態(tài)無靜差的效果,它主要分為重復控制和諧波反饋控制。 本文提出了一種基于雙環(huán)控制和重復控制的逆變器控制方案,兼顧逆變器動靜態(tài)效應,另外使用狀態(tài)觀測器提高數(shù)字控制系統(tǒng)性能。 1 逆變器數(shù)學模型 單相半橋逆變器如圖1所示,L是輸出濾波電感,C是輸出濾波電容,負載任意,r是輸出電感等效電阻和死區(qū)等各種阻尼因素的綜和。U是逆變橋輸出的PWM電壓。 圖1 單相半橋逆變器 選擇電感電流iL和電容電壓vc作為狀態(tài)變量,id看作擾動輸入,得到半橋逆變器的連續(xù)狀態(tài)平均空間模型為 (1) 式中:x=;u=;y=; A=;B=;C=[0 1]。 根據(jù)式(1),很容易得到逆變器在頻域下的方框圖,如圖2所示。PWM逆變器的動態(tài)模型和直流電機相似,轉(zhuǎn)速伺服系統(tǒng)的設計方法在這里也適用。本文借鑒直流電機雙環(huán)控制技術(shù),并改造成為多環(huán)控制系統(tǒng),在逆變器波形控制上取得了很好的效果。 圖2 逆變器框圖 2 控制方案分析 本控制方案包括雙環(huán)控制系統(tǒng)和位居外層的重復控制系統(tǒng)。在瞬時波形控制場合,控制算法的執(zhí)行時間和A/D轉(zhuǎn)換延時相對于采樣周期通常不可忽略,有必要采用狀態(tài)觀測器,利用其預測功能將控制算法提前一拍進行。本方案采用無差拍觀測器對輸出電壓和電感電流進行預測。 2.1 雙環(huán)控制 雙環(huán)控制系統(tǒng)框圖如圖3所示,Z(s)是未知的負載。需要檢測和反饋的信號有三個,即電感電流iL,輸出電壓vc,負載電流id。電感電流檢測為電流環(huán)而設。與直流電機相似,檢測輸出電壓不僅用于電壓瞬時波形控制而且實現(xiàn)輸出電壓解耦,消除輸出電壓對電流環(huán)的擾動,減輕電流環(huán)控制器的負擔。同樣,負載電流對瞬時電壓環(huán)來說也是一個外部擾動,補償負載電流能有效抑制其對輸出波形的影響,提高穩(wěn)態(tài)精度。正是由于對負載電流進行了補償,電流環(huán)無須對負載電流的擾動進行抑制,所以,本方案沒有反饋電容電流,而將擾動包含在反饋環(huán)路的前向通道內(nèi)。若采用電容電流反饋,要得到良好的擾動抑制效果,必將導致電流環(huán)的增益過大。這不僅對穩(wěn)定性不利,而且造成超調(diào)增大,電流跟蹤的快速性受影響。 圖3 雙環(huán)系統(tǒng)控制框圖 模擬控制系統(tǒng)的閉環(huán)極點離虛軸越遠則動態(tài)響應越快,但無法將其配置到s平面的負無窮處,而s平面的負無窮被映射到z平面原點,若將數(shù)字控制系統(tǒng)的閉環(huán)極點全部配置到平面原點,則可以達到極快的動態(tài)響應速度,這就是所謂的無差拍技術(shù)。 由于本方案實現(xiàn)了輸出電壓解耦和負載電流補償,電流環(huán)和電壓環(huán)的結(jié)構(gòu)大大簡化,控制器的設計可以簡單到僅僅采用P環(huán)節(jié)。這里采用無差拍原理確定電流環(huán)控制器KC和瞬時電壓環(huán)控制器KV。 2.1.1 電流環(huán)設計 圖4(a)所示為電流環(huán)框圖,為了實現(xiàn)輸出電壓交叉反饋解耦,控制算法由式(2)給出。 vcom(k)=KC〔iL*(k)-iL(k)〕+vc(k)(2) 式中:iL*是電感電流指令; vcom是電流環(huán)計算出的控制量。 圖4(b)是解耦后簡化的電流環(huán)框圖,ZOH是零階保持器。采用零階保持器法將控制對象離散化。 Gc(z)=Z=(3) 式中:T是采樣周期; a=r/L。 (a)電流環(huán)框圖 (b)解耦后簡化的電流環(huán) 圖4電流環(huán)設計 閉環(huán)系統(tǒng)的特征方程是 Z-=0(4) 根據(jù)無差拍原理,將其特征根全部配置在原點,于是有 (5) 2.1.2 瞬時電壓環(huán)設計 由于電流環(huán)的截止頻率高于瞬時電壓環(huán),對電流指令的跟蹤速度要遠快于瞬時電壓環(huán)對波形的跟蹤,在設計瞬時電壓環(huán)時可認為內(nèi)環(huán)是一個常數(shù)增益環(huán)節(jié)。圖5(a)是瞬時電壓環(huán)框圖。對負載電流進行補償后,相應的控制算法由式(6)給出。 (a)瞬時電壓環(huán)框圖 (b)補償后簡化的電壓環(huán) 圖5 電壓環(huán)設計
評論