三相PFC整流器在輸入電壓不對稱時的改進
1 引言
本文引用地址:http://m.butianyuan.cn/article/175043.htm近十幾年來, 隨著電力電子技術的發(fā)展,許多大容量電機調速系統(tǒng)、家用電器等設備的電力供應都需要對交流電網進行各種AC/DC 或AC/DC/AC的變換。而使用傳統(tǒng)的二極管或晶閘管為功率開關管的非線性變流裝置進行的電源變換將會在電網中產生各種電流諧波,嚴重干擾了其他電氣設備的正常工作,增加了功耗,同時使電網功率因數大大降低減少了電網的有效傳送容量。為此,國際電工委員會的IEC1000-3-3 和IEC519 對整流設備的電流諧波和電磁干擾品質進行了嚴格。規(guī)定為了達到這些要求,各國學者對功率因數校正PowerFactor Correction, PFC 技術進行了深入研究,并取得了一系列成果?,F(xiàn)在,PFC 技術已經成為電力電子學科的重要研究方向之一。目前,單相PFC 技術在電路拓撲和控制策略等方面已日趨成熟,但是三相PFC 整流器由于各相電流互相耦合,需要較為復雜的控制算法才能實現(xiàn),而且它的輸出功率大,對電網的污染更加嚴重,因此三相功率因數校正技術的研究和實現(xiàn)具有重要意義已成為近年來的研究熱點。
三相 PFC 整流器的控制主要有半解耦和全解耦兩大類,主流的控制算法有基于 d-q 解耦的空間矢量調制,遲滯比較算法和單周期控制等??臻g矢量調制要求對輸入電壓進行d-q 解耦控制算法復雜,需采用數字信號處理器DSP 才能實現(xiàn)。而遲滯比較算法的開關頻率不恒定,對輸入和輸出的干擾比較大,需要比較大的電感和電容作為濾波元件。
文獻[1-3]對基于單周期控制的三相PFC 整流器進行了比較深入的研究,該控制器是一種不需要乘法器的新穎控制器,只需對輸入電流進行簡單的積分和加減運算,并和參考電壓直接進行比較即能實現(xiàn)恒調制頻率的開關元件控制波形。該控制器同時具有調制和控制的雙重功能,無論在穩(wěn)態(tài)或暫態(tài)情況下,在控制周期內受控的輸入電流平均值均能恰好正比于控制參考信號,具有動態(tài)響應快、開關頻率穩(wěn)定、魯棒性強、易于實現(xiàn)等優(yōu)點。因而成為三相PFC 整流器的主流控制算法。但文獻[1 3]均是在三相輸入電壓對稱的情況下進行研究而在三相電壓不對稱的情況下,輸入電流雖然仍能保持低的電流畸變,但輸入電流將與輸入電壓產生相移,未能達到單位功率因數的控制目標。本文在分析該控制器產生相移原因的基礎上,提出改進的控制策略,使該控制器在三相輸入電壓不對稱的情況下,各相輸入電流仍能和輸入電壓保持同相,實現(xiàn)單位功率因數和低電流諧波。
2 系統(tǒng)結構和狀態(tài)方程
圖 1 給出了雙并聯(lián)升壓型三相整流器的主電路原理圖。另外,圖2 還給出了輸入電壓b 相幅值減少20% ,c 相相位滯后30 °時三相電壓的波形,并按虛線劃分為六個區(qū)間。須注意的是,輸入電壓不對稱的情況不同,其分區(qū)點也可能不同,分區(qū)點由各相非零序電壓瞬時最大幅度區(qū)分點所確定。依據六階段PWM 控制技術原理,三相整流器可以通過在線性周期的每一區(qū)間內控制兩個開關的通斷來實現(xiàn)單位功率因數。
圖1 雙并聯(lián)升壓型三相整流器主電路拓撲圖
圖2 b相幅值減小20% ,c相滯后30 ° 時三相電壓的波形圖
在開始詳細分析前,假設輸入電壓為正弦波,三相電路參數對稱,功率元器件的正向阻抗和其他寄生參數忽略不計。以圖1 的主電路輸入如圖2 所示的電壓為例,在區(qū)間I 內,開關Sb 一直處于導通狀態(tài),只對開關Sa 和Sc 進行控制,此時三相整流器可以解耦為如圖3 所示的雙并聯(lián)升壓型拓撲結構。
圖中 Vp 、Vn 為不同區(qū)間所對應的電壓,Lp、 Ln 和Lt 為不同區(qū)間所對應的電感,Tp、 Tn 為不同區(qū)間所對應的主控開關,dp 、dn 為主控開關的占空比。由于PWM 開關頻率遠高于電網頻率,因此,在一個開關周期內,各電感的電壓平均值為零,運用回路電流法和節(jié)點電壓法對各種開關狀態(tài)進行分,析可得出:
和
從而推導出
其中
可以證明,式1 在任意區(qū)間的兩種開關順序都成立,并且只要電路工作在連續(xù)導通的模式,該等式即能準確反映出穩(wěn)態(tài)電路的輸入電壓、輸出電壓和占空比三者之間的固定關系,與所采用的控制方案無關。因此式1 即為該整流器的狀態(tài)方程。
3 不對稱電壓對輸入電流的影響
文獻[1]依據式4 構建三相PFC 整流器,并根據三相電壓對稱和實現(xiàn)單位功率因數的目標而令va = Reia ,vb = Reib和vc = Reic,然后根據va+vb+vc=0和ia+ib+ic=0 的約束條件得知只要控制其中兩相電流跟蹤對應相的電壓,就可以使另外一相電流也跟蹤該相電壓。由此推算出實現(xiàn)單位功率因數的占空比計算公式:
當輸入電壓不對稱時,va+vb+vc=0 不一定成立,如果仍然按照式5 作為單周期控制的占空比函數,此時各相電流為:
其中:
即 van0, vbn0 和vcn0 分別為各相電壓不含零序電壓的部分。由式(6) 和式(7 )可知,各相電流仍能保持低電流畸變。但若(va+vb+vc)/3≠0, 輸入電流和輸入電壓會存在一個相位差,從而導致系統(tǒng)不能實現(xiàn)單位功率因數。為使系統(tǒng)仍能實現(xiàn)單位功率因數的目標,必須改進系統(tǒng)的控制策略。
4 改進的控制策略
4.1 相電壓不對稱系數的計算
三相輸入電壓不對稱時,假設各相電流跟蹤各自的相電壓此,時可令從輸入端看進去各相對中線的等效電阻為Ra ,Rb 和Rc 。因系統(tǒng)采用三相三線制在任意時刻均有:
故對任意時刻 t0 t1 t2, ……,tn 有:
由于電網電壓可能存在各種干擾,為使計算結果盡可能精確,可將一個或幾個周期內的n 個采樣電壓分為多組,取其中的兩組來計算相電壓不對稱系數。對式(9) 按該兩組相加,可得:
由此得:
式 (11 )為相電壓不對稱系數的計算公式,其中λa ,λb 和λc 為相電壓不對稱系數,Re 為標準等效電阻??梢?,當電網電壓不對稱時,為使各相電流仍能正確跟蹤對應相電壓,各相等效電阻值是不同的。特殊地,如果三相電壓對稱,λa=λb=λc =1 ,則Ra=Rb=Rc=Re.
三極管相關文章:三極管放大電路
零序電流保護相關文章:零序電流保護原理
評論