新聞中心

EEPW首頁(yè) > 電源與新能源 > 設(shè)計(jì)應(yīng)用 > 延長(zhǎng)導(dǎo)通時(shí)間可減小輸入電容容量

延長(zhǎng)導(dǎo)通時(shí)間可減小輸入電容容量

作者: 時(shí)間:2013-04-08 來(lái)源:網(wǎng)絡(luò) 收藏

簡(jiǎn)介

本文引用地址:http://m.butianyuan.cn/article/175389.htm

基于微處理器的器件需要使用穩(wěn)壓電源(UPS)以檢測(cè)輸入功率損耗和繼續(xù)在完成內(nèi)存?zhèn)浞?即將關(guān)鍵數(shù)據(jù)寫(xiě)入非易失性存儲(chǔ)器)的時(shí)間內(nèi)進(jìn)行供電。

設(shè)計(jì)連續(xù)輸出功率的一種方法是:生成較高的輸出電壓和使用線(xiàn)性穩(wěn)壓器生成所需的較低電壓。線(xiàn)性穩(wěn)壓器輸入端電容用于提供維持時(shí)間。但遺憾的是,這種方法會(huì)降低電源的整體效率,原因是它需要使用次級(jí)線(xiàn)性穩(wěn)壓器,進(jìn)而需要更大的變壓器和元件,使得電源電路初級(jí)側(cè)的額定功率更高。

另一種解決方案是使用已知的導(dǎo)通時(shí)間延長(zhǎng)技術(shù),這種方法在Power Integrations(PI)的一系列離線(xiàn)式開(kāi)關(guān)IC中得到采用。在PI芯片中,導(dǎo)通時(shí)間延長(zhǎng)功能與開(kāi)/關(guān)控制功能相結(jié)合,用來(lái)提供穩(wěn)壓。這兩種技術(shù)都可以替代傳統(tǒng)的脈寬調(diào)制(PWM)控制,而無(wú)需添加額外的電路,如圖1所示。

簡(jiǎn)化的TinySwitch-III應(yīng)用電路

內(nèi)存?zhèn)浞莨β室?/p>

需要在關(guān)斷之前存儲(chǔ)關(guān)鍵數(shù)據(jù)的產(chǎn)品應(yīng)用通常會(huì)使用EEPROM內(nèi)存,并需要獲得穩(wěn)壓電源電壓,以便在完成內(nèi)存寫(xiě)周期的時(shí)間持續(xù)供電。對(duì)于某些EEPROM內(nèi)存而言,寫(xiě)周期時(shí)間可能長(zhǎng)達(dá)10 ms。為了提供足夠的寫(xiě)周期時(shí)間,標(biāo)準(zhǔn)的做法是:通過(guò)關(guān)閉所有外設(shè)和不必要的額外負(fù)載來(lái)降低斷電序列條件下的功耗。圖2顯示了直流總線(xiàn)電壓和斷電序列的關(guān)系,從而可以有效利用儲(chǔ)存在輸入直流總線(xiàn)端濾波電容中的能量。

直流總線(xiàn)電壓和斷電序列的關(guān)系

功率轉(zhuǎn)換器階段需要使用儲(chǔ)存于輸入濾波電容中的能量,以便將輸出電壓維持在穩(wěn)壓限制范圍之內(nèi)。在圖2中,這代表著直流總線(xiàn)電壓從Vmin2降到Vmin3及進(jìn)行數(shù)據(jù)備份所需要維持的一段時(shí)間(檢測(cè)到輸入失敗情況后)。

對(duì)于大多數(shù)低功率應(yīng)用而言,反激式轉(zhuǎn)換器因?yàn)榫哂谐杀镜汀⒃?shù)量少和在通用輸入應(yīng)用中易于設(shè)計(jì)等優(yōu)勢(shì),而成為一種可選的拓?fù)浣Y(jié)構(gòu)。我們將用兩個(gè)反激式轉(zhuǎn)換器進(jìn)行比較,來(lái)說(shuō)明導(dǎo)通時(shí)間延長(zhǎng)技術(shù)的效率及其對(duì)電容選擇的影響:一個(gè)反激式轉(zhuǎn)換器在非連續(xù)導(dǎo)通模式工作一固定頻率技術(shù)(DCMFF),而另一個(gè)則利用導(dǎo)通時(shí)間延長(zhǎng)來(lái)實(shí)施非連續(xù)導(dǎo)通模式-占空比擴(kuò)展技術(shù)(DCMDE)。

輸入電壓下降時(shí)的功率輸出

案例1:DCMFF-最大占空比為50%。在本例中,我們將針對(duì)工作頻率為100kHz并使用了一個(gè)500μH初級(jí)電感的21.25W(5V@4.25A)電源設(shè)計(jì),對(duì)最大占空比為50%的DCMFF轉(zhuǎn)換階段的功率輸出能力進(jìn)行測(cè)評(píng)(參見(jiàn)圖3)。假設(shè)能效為84%。

對(duì)最大占空比為50

此設(shè)計(jì)的Vmim為100V。當(dāng)直流總線(xiàn)電壓為100V時(shí),如果所連負(fù)載等于滿(mǎn)載(即21.25W),則占空比將達(dá)到最大值。

對(duì)于最大占空比為50%的DCMFF設(shè)計(jì),最大輸出功率與直流總線(xiàn)電壓之間的關(guān)系如公式(1)所示。

公式

圖4顯示,電路的最大功率能力將隨著電壓的下降而下降,對(duì)于為50%滿(mǎn)載的負(fù)載,電路可以維持輸出端穩(wěn)壓,使直流總線(xiàn)電壓僅下降到69V。

電路的最大功率能力將隨著電壓的下降而下降

案例2:DCMDE-導(dǎo)通時(shí)間延長(zhǎng)而不改變關(guān)斷時(shí)間可以自動(dòng)擴(kuò)展占空比。要使導(dǎo)通時(shí)間延長(zhǎng)方法與固定頻率DCMFF方法進(jìn)行可行性對(duì)比,需要將Vmin=100V下的占空比假設(shè)為50%。其結(jié)果是,電路在100V直流輸入電壓下輸出滿(mǎn)載功率時(shí)的初級(jí)電感值相同,以及高于100VDC的直流總線(xiàn)電壓具有相同的工作條件。

電路工作情況:電路的工作情況與DCMFF配置相同,直到直流輸入電壓降到與Vmim相等的值。隨著輸入電壓降到Vmin以下,t0-t1的時(shí)間間隔將被延長(zhǎng),直到初級(jí)電流達(dá)到預(yù)定的峰值初級(jí)電流值,后者等于輸入電壓為Vmin(占空比為50%)時(shí)的預(yù)計(jì)值。t1到t2的時(shí)間間隔保持不變,且等于正常工作條件下開(kāi)關(guān)頻率的時(shí)間間隔的一半。

圖5顯示了輸入電壓下降時(shí)初級(jí)繞組電流波形的變化。由于電感電流斜率隨著輸入電壓的降低而降低,因此初級(jí)電流達(dá)到所需的峰值電流值將需要更長(zhǎng)的時(shí)間。雖然通過(guò)延長(zhǎng)導(dǎo)通時(shí)間間隔可以自動(dòng)降低工作頻率,但每個(gè)工作周期儲(chǔ)存在電感中的能量仍將保持不變。工作頻率下降可以導(dǎo)致電路的最大功率能力隨之下降。此時(shí),電路的最大功率能力曲線(xiàn)表現(xiàn)為不同的形狀(參見(jiàn)圖4)。

最小輸入電壓與最大輸出功率之間的關(guān)系如公式(2)和公式(3)所示。

公式

公式

對(duì)比以上兩條曲線(xiàn)可以明顯確定,與DCMFF(固定頻率占空比限制)設(shè)計(jì)相比,導(dǎo)通時(shí)間延長(zhǎng)方案可以使功率轉(zhuǎn)換器在較低的輸入電壓下輸出更高的功率(參見(jiàn)圖4)。

電容相關(guān)文章:電容原理

上一頁(yè) 1 2 下一頁(yè)

關(guān)鍵詞:

評(píng)論


相關(guān)推薦

技術(shù)專(zhuān)區(qū)

關(guān)閉