利用實測GTO陽極電流波形設(shè)計逆變器緩沖電路
摘要:緩沖電路參數(shù)值對GTO的關(guān)斷性能及整個GTO逆變器的工作性能起著至關(guān)重要的作用。本文通過對GTO關(guān)斷過程中陽極電流與陽極電壓波形的分析,提出一種以“綜合指標”作為目標函數(shù)的緩沖電路參數(shù)尋優(yōu)方案,可根據(jù)對GTO裝置性能的具體要求確定GTO緩沖電路元件的最佳參數(shù)。
本文引用地址:http://m.butianyuan.cn/article/179609.htm關(guān)鍵詞:GTO緩沖電路設(shè)計陽極電流
中圖法分類號:TM464文獻標識碼:A文章編號:02192713(2000)0948403
1引言
緩沖電路參數(shù)值直接影響GTO的關(guān)斷性能及整個GTO逆變器的工作性能。因此如何在設(shè)計GTO逆變器時合理設(shè)計緩沖電路參數(shù),便成為重要的問題。
本文通過對GTO關(guān)斷過程中陽極電流與陽極電壓波形的分析,提出并論證了GTO陽極電流波形與緩沖電路參數(shù)無關(guān)、緩沖二極管的反向恢復(fù)過程與緩沖電路參數(shù)無關(guān)的論點。在此基礎(chǔ)上,提出了一種簡便、實用的緩沖電路參數(shù)優(yōu)化設(shè)計方案??筛鶕?jù)對GTO裝置性能的具體要求確定GTO緩沖電路元件最優(yōu)參數(shù)。在對GTO關(guān)斷過程中陽極電壓及關(guān)斷功耗波形進行仿真時,為提高仿真精度,采用了實測的陽極關(guān)斷電流波形。并據(jù)此推導(dǎo)出關(guān)斷功耗波形。仿真結(jié)果與實驗波形比較,誤差極小。本文提出了一種以“綜合指標”作為目標函數(shù)的緩沖電路參數(shù)尋優(yōu)方案。
2利用陽極電流波形對陽極電壓波形仿真的前提條件
GTO緩沖電路可等效為圖1所示電路。如要利用實測的陽極電流對陽極電壓進行仿真,首先需要證明以下兩個條件成立:
(1)GTO陽極電流波形與緩沖電路參數(shù)無關(guān);
(2)緩沖二極管的反向恢復(fù)過程與緩沖電路參數(shù)無關(guān)。
2.1GTO陽極電流波形與緩沖電路參數(shù)無關(guān)
圖2為GTO關(guān)斷時的陽極電流波形。整個過程可分為3個階段:即存儲時間段、下降時間段及拖尾時間段。
在存儲時間段及下降時間段中,存儲時間ts及下降時間tf值僅取決于門極抽取能力及GTO內(nèi)部結(jié)構(gòu),而與緩沖電路參數(shù)無關(guān)。此兩段的陽極電流波形也與緩沖電路參數(shù)無關(guān)。
在拖尾時間段,拖尾電流基本
圖1GTO緩沖電路示意圖
圖2GTO陽極關(guān)斷電流波形示意圖
上由下降時間段的陽極電流波形及結(jié)溫決定,與緩沖電路參數(shù)無關(guān)。
圖3中8條曲線是CS=2,3,4,5μF時的陽極電流及陽極電壓波形??梢姡诰彌_電路參數(shù)變化后,陽極電壓波形變化較大,而4條陽極電流曲線基本上完全重合。由此實驗可驗證以上分析的正確性。
圖中曲線(1),(2),(3),(4)為緩沖電路參數(shù)改變后的實測陽極電壓波形;
曲線(5),(6),(7),(8)為緩沖電路參數(shù)改變后的實測陽極電流波形。
2.2緩沖二極管的反向恢復(fù)過程與緩沖電路參數(shù)無關(guān)
儲存電荷Qr及恢復(fù)時間trr是緩沖二極管反向恢復(fù)過程中兩個重要參數(shù)。在分析GTO關(guān)斷過程時,可近似認為Qr,trr為常量。由圖4可證明這一點。圖4是改變緩沖電阻支路分布電感后測得的緩沖電阻支路電流及緩沖二極管支路電流。可見,在Lrs改變后,irs變化很大,而ids幾乎不變。即可認為trr只與緩沖二極管本身的特性有關(guān)。
圖中曲線(1),(2),(3)為Lrs改變前、后的實測緩沖電阻支路電流波形。
曲線(4),(5),(6)為Lrs改變前、后的實測緩沖二極管支路電流波形;
圖3緩沖電路參數(shù)改變后的陽極電流、陽極電壓波形
評論