由單一輸入電壓實(shí)現(xiàn)分離供電軌的改進(jìn)拓?fù)浣Y(jié)構(gòu)
標(biāo)簽:模擬 電子 IT 電路
本文引用地址:http://m.butianyuan.cn/article/185739.htm簡(jiǎn)介
雖然軌到軌單電源運(yùn)算放大器已得到廣泛使用,但仍然常常需要由單一(正)輸入供電軌產(chǎn)生兩個(gè)供電軌(例如±15 V),以便為模擬信號(hào)鏈的不同部分供電。這些部分的電流一般較低(例如10 mA至500 mA),正負(fù)電源具有相對(duì)匹配良好的負(fù)載。
該問(wèn)題的一種解決方案是使用兩個(gè)不同的轉(zhuǎn)換器,一個(gè)提供正供電軌,一個(gè)提供負(fù)供電軌。這樣做成本高昂,而且正如本應(yīng)用筆記所示,也沒(méi)有必要。另一種解決方案是使用一個(gè)反激式轉(zhuǎn)換器,然而,兩個(gè)電源在差分負(fù)載下往往不能非常好地保持一致,需要較大且昂貴的變壓器,而且效率低下。
更好的解決方案是使用一個(gè)SEPIC-C'uk轉(zhuǎn)換器,該拓?fù)浣Y(jié)構(gòu)由連接到同一開(kāi)關(guān)節(jié)點(diǎn)的一個(gè)輸出不受調(diào)節(jié)的C'uk轉(zhuǎn)換器和一個(gè)輸出受到調(diào)節(jié)的SEPIC轉(zhuǎn)換器組成。這一組合產(chǎn)生的兩個(gè)電源幾乎能在所有條件下都非常好地保持一致,除非負(fù)載100%不匹配。
對(duì)該轉(zhuǎn)換器的工作原理及使用ADI公司ADP161x的實(shí)現(xiàn)方案進(jìn)行分析,證明這種拓?fù)浣Y(jié)構(gòu)功能全面。此外,本文將介紹一種革命性的新型設(shè)計(jì)工具,它有助于在用戶應(yīng)用中快速實(shí)現(xiàn)SEPIC-C'uk轉(zhuǎn)換器。
圖1. SEPIC-C'uk轉(zhuǎn)換器原理圖
初看起來(lái),SEPIC-C'uk似乎是一個(gè)很復(fù)雜的轉(zhuǎn)換器,具有四個(gè)不同的電感和開(kāi)關(guān)。但是,可以將它看作由兩個(gè)轉(zhuǎn)換器組成,從而簡(jiǎn)化分析。對(duì)于SEPIC或C'uk轉(zhuǎn)換器,Q1和Q2開(kāi)關(guān)以相反的相位工作。圖2顯示SEPIC轉(zhuǎn)換器在兩種不同開(kāi)關(guān)狀態(tài)下的電流流向。
圖2. SEPIC轉(zhuǎn)換器的電流流向
雖然并不十分明顯,但傳輸電容(C1)的電壓約為恒定的VIN(帶很小的紋波)。
圖4所示為SEPIC轉(zhuǎn)換器的理想波形。當(dāng)Q1導(dǎo)通時(shí),SN2的電壓等于-VIN.因此,在Q1導(dǎo)通(Q2斷開(kāi))期間,L1a和L1b上的電壓為VIN;當(dāng)Q1斷開(kāi)(Q2導(dǎo)通)時(shí),L1a和L1b上的電壓為-VOUT.應(yīng)用電感伏秒平衡原理,可以計(jì)算穩(wěn)態(tài)直流轉(zhuǎn)換比,如方程式1所示。D為轉(zhuǎn)換器的占空比(開(kāi)關(guān)周期中Q1導(dǎo)通時(shí)間所占的比例)。
C'uk轉(zhuǎn)換器的工作方式與SEPIC轉(zhuǎn)換器相似,但是,開(kāi)關(guān)Q2接地,而不是連接到輸出端,電感L2b連接到輸出端,而不是接地。圖3顯示C'uk轉(zhuǎn)換器在兩種開(kāi)關(guān)位置時(shí)的電流流向。
C'uk是一個(gè)負(fù)輸出轉(zhuǎn)換器,因此流出負(fù)載的電流為其提供能量。
圖3. C'uk轉(zhuǎn)換器的電流流向
C'uk轉(zhuǎn)換器的理想波形如圖4所示。應(yīng)用電感伏秒平衡和電容電荷平衡的原理,可知C1上的電壓為VIN + VOUT.因此,SN2開(kāi)關(guān)節(jié)點(diǎn)在GND(當(dāng)Q2閉合時(shí))與-(VIN + VOUT)之間切換。當(dāng)Q1導(dǎo)通(Q2斷開(kāi))時(shí),L2a和L2b上的電壓為VIN;當(dāng)Q1斷開(kāi)(Q2導(dǎo)通)時(shí),L2a和L2b上的電壓為-VOUT。
圖4. SEPIC理想波形比較
圖4和圖5中的波形可知,C'uk中電感上的電壓與SEPIC中的情況完全相同。因此,C'uk的占空比關(guān)系式恰好為SEPIC的負(fù)值,如方程式2所示。
圖5. C'uk理想波形
由于占空比關(guān)系式大小相等但符號(hào)相反,開(kāi)關(guān)節(jié)點(diǎn)(SN1)電壓相同,電感電流相同,因此可以簡(jiǎn)單地將這兩個(gè)轉(zhuǎn)換器同時(shí)連接到節(jié)點(diǎn)SN1.合并后的轉(zhuǎn)換器如圖1所示。
Q2和Q3由二極管取代,因?yàn)檫@些電源一般是低功率模擬電源,適合使用異步控制器。此外,兩個(gè)電感(L1a和L2a)并聯(lián),這是因?yàn)長(zhǎng)1a和L1b、L2a和L2b通過(guò)兩個(gè)獨(dú)立的耦合電感耦合在一起,由此會(huì)帶來(lái)多項(xiàng)好處。
耦合電感可將電感中的電流紋波降低兩倍(參見(jiàn)參考文獻(xiàn)部分引用的C'uk-Middlebrook論文)。此外,它可以消除方程式3和方程式4所確定的SEPIC和C'uk諧振,從而顯著降低小信號(hào)模型的復(fù)雜度,并且支持更高的帶寬。這樣,我們就能使用種類(lèi)眾多的現(xiàn)成器件,而不必局限于為數(shù)不多的三繞組1:1:1電感。
也可以使用Coilcraft Hexapath系列等六繞組器件或定制的三繞組變壓器。
耦合系數(shù)的限制
雖然耦合電感具有突出的優(yōu)勢(shì),但并不希望耦合太緊,以至于有大量能量通過(guò)鐵芯傳輸。為避免這種情況,設(shè)計(jì)人員必須確保C1(和C2)在開(kāi)關(guān)頻率下的復(fù)阻抗小于泄漏電感(LLKG)的阻抗加上單一繞組DCR構(gòu)成的復(fù)阻抗的十分之一。
該不等式如方程式5所示。泄漏電感(Ll)可以利用方程式6和耦合電感數(shù)據(jù)手冊(cè)中提供的耦合系數(shù)(K)來(lái)計(jì)算。Lm是數(shù)據(jù)手冊(cè)中提供的自感測(cè)量值。注意,在方程式5中,Cx和Lx中的x表示C1或C2、L1或L2。
差分負(fù)載和輸出電壓跟蹤
本質(zhì)上,SEPIC-C'uk的C'uk(負(fù))輸出是未經(jīng)調(diào)節(jié)的,因此與SEPIC(正)輸出相比,輸出電流的變化會(huì)帶來(lái)一定的負(fù)載變化,特別是負(fù)載不匹配時(shí)。注意,其跟蹤特性比相似配置的反激式轉(zhuǎn)換器要好得多,尤其是在瞬變或負(fù)載不匹配的情況下,這是因?yàn)橥ǖ乐g的耦合是直接連接,而不是通過(guò)本身具有泄漏電感的變壓器進(jìn)行連接。
圖6顯示將一個(gè)30 mA瞬變施加于SEPIC-C'uk轉(zhuǎn)換器的C'uk(-VOUT)輸出的響應(yīng),SEPIC輸出保持恒定的100 mA.圖中顯示兩個(gè)輸出均對(duì)該瞬變負(fù)載做出了響應(yīng)。這是最差情況的瞬變,因?yàn)镃'uk輸出未經(jīng)調(diào)節(jié)。值得注意的是,-VOUT軌顯示的大部分偏差實(shí)際上是應(yīng)用于兩個(gè)軌的負(fù)載(IOUT+ 、I OUT- )之間不匹配所引起的直流調(diào)節(jié)偏移。
圖6. 對(duì)負(fù)(C'uk)輸出施加30 mA階躍負(fù)載的瞬態(tài)響應(yīng)
當(dāng)兩個(gè)電源的負(fù)載相同時(shí),在穩(wěn)態(tài)下,權(quán)重較大的誤差項(xiàng)是電感的DCR不匹配和二極管的正向電壓,可以讓這些誤差變得相對(duì)輸出電壓非常小。
當(dāng)負(fù)載顯著不匹配時(shí),誤差增大,如圖7所示。因此,在某些應(yīng)用中,可能有必要在一個(gè)或兩個(gè)通道上放置一個(gè)小的偽負(fù)載,使兩個(gè)電源均在其調(diào)節(jié)窗口中。應(yīng)注意,一般而言,只要有足夠的裕量,則運(yùn)算放大器等模擬芯片對(duì)其電源的直流變化不是很敏感。
圖7. 差分負(fù)載下供電軌之間的相對(duì)電壓調(diào)節(jié)
評(píng)論