新聞中心

EEPW首頁 > 模擬技術 > 設計應用 > 如何為具體應用選擇恰當的MOSFET

如何為具體應用選擇恰當的MOSFET

作者: 時間:2012-09-03 來源:網絡 收藏

顯然,電源設計相當復雜,而且也沒有一個簡單的公式可用于的評估。但我們不妨考慮一些關鍵的參數,以及這些參數為什么至關重要。傳統(tǒng)上,許多電源設計人員都采用一個綜合品質因數(柵極電荷QG ×導通阻抗RDS(ON))來評估或對之進行等級劃分。

本文引用地址:http://m.butianyuan.cn/article/185814.htm

  柵極電荷和導通阻抗之所以重要,是因為二者都對電源的效率有直接的影響。對效率有影響的損耗主要分為兩種形式--傳導損耗和開關損耗。

  柵極電荷是產生開關損耗的主要原因。柵極電荷單位為納庫侖(nc),是柵極充電放電所需的能量。柵極電荷和導通阻抗RDS(ON) 在半導體設計和制造工藝中相互關聯,一般來說,器件的柵極電荷值較低,其導通阻抗參數就稍高。

  開關電源中第二重要的MOSFET參數包括輸出電容、閾值電壓、柵極阻抗和雪崩能量。

  某些特殊的拓撲也會改變不同MOSFET參數的相關品質,例如,可以把傳統(tǒng)的同步降壓轉換器與諧振轉換器做比較。諧振轉換器只在VDS (漏源電壓)或ID (漏極電流)過零時才進行MOSFET開關,從而可把開關損耗降至最低。這些技術被成為軟開關或零電壓開關(ZVS)或零電流開關(ZCS)技術。由于開關損耗被最小化,RDS(ON) 在這類拓撲中顯得更加重要。

  低輸出電容(COSS)值對這兩類轉換器都大有好處。諧振轉換器中的諧振電路主要由變壓器的漏電感與COSS決定。此外,在兩個MOSFET關斷的死區(qū)時間內,諧振電路必須讓COSS完全放電。因此,諧振拓撲很看重較低的COSS??紤]圖3所示的飛兆半導體FDMS7650的COSS與VDS的關系圖。

  

  圖3:FDMS7650的COSS與VDS的關系圖。

  低輸出電容也有利于傳統(tǒng)的降壓轉換器(有時又稱為硬開關轉換器),不過原因不同。因為每個硬開關周期存儲在輸出電容中的能量會丟失,反之在諧振轉換器中能量反復循環(huán)。因此,低輸出電容對于同步降壓調節(jié)器的低邊開關尤其重要。

  馬達控制應用的MOSFET

  馬達控制應用是功率MOSFET大有用武之地的另一個應用領域,這時最重要的選擇基準可能又與其它大不相同。不同于現代開關電源,馬達控制電路不在高頻下開關。典型的半橋式控制電路采用2個MOSFET (全橋式則采用4個),但這兩個MOSFET的關斷時間(死區(qū)時間)相等。對于這類應用,反向恢復時間(trr) 非常重要。在控制電感式負載(比如馬達繞組)時,控制電路把橋式電路中的MOSFET切換到關斷狀態(tài),此時橋式電路中的另一個開關經由MOSFET中的體二極管臨時反向傳導電流。于是,電流重新循環(huán),繼續(xù)為馬達供電。當第一個MOSFET再次導通時,另一個MOSFET二極管中存儲的電荷必須被移除,通過第一個MOSFET放電,而這是一種能量的損耗,故trr 越短,這種損耗越小。

  所以,若設計團隊需要在電源電路采用MOSFET,在評估過程開始之前,需對手中的應用進行仔細全面的考慮。應根據自己的需求而非制造商吹噓的特定規(guī)格來對各項參數進行優(yōu)先級劃分。

  補充:利用IC和封裝設計獲得最小的 RDS(ON) 規(guī)格

  在MOSFET的選擇過程中,評估參數的設計人員一般通過仔細分析相關規(guī)格來了解自己到底需要什么。但有時深入了解IC制造商如何提供工作特性是很有必要的。以RDS(ON)為例,你也許通常期望該規(guī)格只與器件的設計及半導體制造工藝有關。但實際上,封裝設計對導通阻抗RDS(ON) 的最小化有著巨大的影響。

  封裝對RDS(ON)的作用巨大是因為該參數主要取決于傳導損耗,而封裝無疑可以影響傳導損耗??紤]本文正文提及的飛兆半導體FDMS7650 和1mΩ導通阻抗。該器件能獲得較低RDS(ON) 值,大約一半原因可歸結于封裝設計。其封裝采用一種堅固的銅夾技術取代常用的鋁或金鍵合引線來連接源極和引線框架。這種方案把封裝阻抗降至最小,并降低了源極電感,源極電感是開關器件產生振鈴的主要原因。


上一頁 1 2 下一頁

關鍵詞: MOSFET

評論


相關推薦

技術專區(qū)

關閉