模擬電路故障診斷中的特征提取方法
1、引言
本文引用地址:http://m.butianyuan.cn/article/188996.htm故障特征提取是模擬電路故障診斷的關(guān)鍵,而模擬電路由于故障模型復(fù)雜、元件參數(shù)的容差、非線性、噪聲以及大規(guī)模集成化等現(xiàn)象使電路故障信息表現(xiàn)為多特征、高噪聲、非線性的數(shù)據(jù)集,且受到特征信號觀測手段、征兆提取方法、狀態(tài)識別技術(shù)、診斷知識完備程度以及診斷經(jīng)濟(jì)性的制約,使模擬電路的故障診斷技術(shù)滯后于數(shù)字電路故障診斷技術(shù)而面臨巨大的挑戰(zhàn)。模擬電路故障診斷本質(zhì)上等價(jià)于模式識別問題,因此研究如何把電路狀態(tài)的原始特征從高維特征空間壓縮到低維特征空間,并提取有效故障特征以提高故障診斷率就成了一個(gè)重要的課題。本文將簡要介紹部分模擬電路故障診斷中使用的特征提取方法的 原理步驟及其優(yōu)缺點(diǎn),為進(jìn)一步的研究打下基礎(chǔ)。
2、基于統(tǒng)計(jì)理論的特征提取
傳統(tǒng)的基于統(tǒng)計(jì)理論的特征提取方法是考慮測點(diǎn)數(shù)據(jù)的一階矩和二階矩,根據(jù)這些測點(diǎn)數(shù)據(jù)的重要統(tǒng)計(jì)特征來降低特征空間維數(shù)達(dá)到有效特征提取的目的,其中包括基于可分離性準(zhǔn)則、K-L變換、主元分析等特征提取方法。
主元分析是基于數(shù)據(jù)樣本方差-協(xié)方差(相關(guān)系數(shù))矩陣的數(shù)據(jù)特征分析方法,它從特征有效性的角度,通過線性變換,在數(shù)據(jù)空間中找一組向量盡可能的解釋數(shù)據(jù)的方差,將數(shù)據(jù)從原來的高維空間映射到一個(gè)低維向量空間,降維后保留數(shù)據(jù)的主要信息,且主分量間彼此獨(dú)立,從而使數(shù)據(jù)更易于處理。在模擬電路故障診斷中[1,2],采用主元分析實(shí)現(xiàn)數(shù)據(jù)壓縮和特征提取的過程是:首先將原始特征數(shù)據(jù)標(biāo)準(zhǔn)化,消除原變量的量綱不同和數(shù)值差異太大帶來的影響;然后建立數(shù)據(jù)的相關(guān)矩陣,并計(jì)算矩陣的特征值及特征向量,并對所得的特征值進(jìn)行排序;最后根據(jù)特征值的方差貢獻(xiàn)率選取主元,通常要求累計(jì)方差貢獻(xiàn)率達(dá)到80%到90%即可,診斷系統(tǒng)結(jié)構(gòu)如圖1所示。經(jīng)過主元分析將特征向量降維后,減少了診斷神經(jīng)網(wǎng)絡(luò)的輸入,提高了網(wǎng)絡(luò)訓(xùn)練速度,降低了神經(jīng)網(wǎng)絡(luò)的計(jì)算復(fù)雜度。
圖1 基于主元分析的模擬電路故障診斷系統(tǒng)
基于統(tǒng)計(jì)理論的特征提取在應(yīng)用中常常因?yàn)楦怕拭芏群瘮?shù)的分布問題使最優(yōu)變換矩陣的計(jì)算陷入困境,而高分辨特征提取所需的映射常常是非線性的,因此基于統(tǒng)計(jì)理論的線性變換方法在使用時(shí)受到了限制。進(jìn)一步的研究方向是其方法的非線性延伸,如非線性主元變換以及和其它特征提取方法的融合使用。
3、基于小波分析的特征提取[3-8]
在電路信號的特征提取中,常采用頻譜分析的方法。但是基于統(tǒng)計(jì)分析的傅立葉分析僅對不隨時(shí)間變化的平穩(wěn)信號十分有效,對于模擬電路響應(yīng)信號中通常含有非平穩(wěn)或時(shí)變信息卻不能有效地提取故障特征。另外,模擬電路中含有大量噪聲,若直接將高頻成分當(dāng)作噪聲成份舍棄會造成有效成分的損失,若單純對電路的輸出進(jìn)行分析,會導(dǎo)致故障模糊集較多,分辨率不高[5]。而小波分析所具有的時(shí)頻局部化特性、良好的去噪能力,無需系統(tǒng)模型結(jié)構(gòu)的優(yōu)勢使之成為分析和處理此類信號的有效工具,也是目前在模擬電路故障診斷領(lǐng)域使用最多的一種特征提取方法,對模擬電路中的軟、硬故障均適用。
小波分析的基本原理是通過小波母函數(shù)在尺度上的伸縮和時(shí)域上的頻移來分析信號,適當(dāng)選擇母函數(shù)可使擴(kuò)張函數(shù)具有良好的局部性,非常適合對非平穩(wěn)信號進(jìn)行奇異值分析,以區(qū)分信號的突變與噪聲。目前在模擬電路故障診斷文獻(xiàn)[3-8]中用到了小波變換、小波包變換以及多小波變換等來對電路故障信息進(jìn)行特征提取,對模擬電路瞬態(tài)信號的提取、消除電路噪聲和模擬電路特有的元件參數(shù)容差具有良好的效果。
小波分析技術(shù)實(shí)現(xiàn)時(shí)與神經(jīng)網(wǎng)絡(luò)有兩種結(jié)合方式:一是松散型結(jié)合,二是緊致型結(jié)合。松散型結(jié)構(gòu)是數(shù)據(jù)預(yù)處理采用的最常見的方式,目前緊致型結(jié)構(gòu)的小波神經(jīng)網(wǎng)絡(luò)也已成功用于模擬電路的去噪和特征提取[5]。由于緊致型小波神經(jīng)網(wǎng)絡(luò)是用非線性小波基代替非線性的sigmoid函數(shù),通過仿射變換建立小波變換與神經(jīng)網(wǎng)絡(luò)的連接,具有更強(qiáng)的逼近能力和收斂速度,不管是用于特征提取還是故障診斷都具有明顯的優(yōu)勢。緊致型小波神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)如圖2所示。
圖2 緊致型小波神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)圖
小波分析技術(shù)中的多分辨率分析每次只對信號的低頻部分進(jìn)行分解,高頻部分卻保持不動導(dǎo)致了高頻部分的分辨率很低。而小波包變換卻提供了一種更加精細(xì)的分析方法,即可同時(shí)在低頻和高頻部分進(jìn)行分解,以自適應(yīng)地確定信號在不同頻段的分辨率,使分解序列在整個(gè)時(shí)頻域內(nèi)都有較高的時(shí)頻分辨率和相同帶寬,更有效地進(jìn)行特征提取。而多小波(Multiwavelet)變換可以同時(shí)擁有對稱性、正交性、短支撐性、高階消失矩等重要性質(zhì),彌補(bǔ)了單小波的不足,也開始成為特征提取研究的熱點(diǎn)。其與單小波的多分辨分析不同之處在于它的一個(gè)多分辨分析是由多個(gè)尺度函數(shù)所生成的,而其構(gòu)造方法一般可以利用多小波的正交性、對稱性、短支撐性和逼近階次來構(gòu)造相應(yīng)的多尺度函數(shù)和多小波函數(shù)。
模擬信號相關(guān)文章:什么是模擬信號
評論